| 研究生: |
張永政 Zhang, Yong-Zheng |
|---|---|
| 論文名稱: |
矽酸鹽Na3YSi2O7系螢光粉之製備與光致發光特性研究 Synthesis and photo-luminescent properties of Na3YSi2O7 based silicate phosphors |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 矽酸鹽 、螢光粉 、稀土離子 |
| 外文關鍵詞: | silicate, phosphors, rare earth ions |
| 相關次數: | 點閱:75 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以矽酸鹽類Na3YSi2O7為主體晶格材料,分別摻雜活化中心如:Eu3+、Tm3+、Dy3+、Sm3+、Tb3+、Bi3+等離子,期望得到不同放光波段之螢光粉體。製程方面乃是利用高能震動球磨來混合起始物原料,並使用固相反應法在1200℃中持溫6小時完成螢光粉體的製備。分析方面則以熱重熱差分析儀來分析起始混合物之成相溫度,再使用X光粉末繞射、掃描式電子顯微鏡、紫外光-可見光全反射光譜分析儀及光激發光光譜分析儀來分析粉體結構、表面形貌及光譜分析。
發射紅光之螢光體中,Na3YSi2O7:Eu3+螢光粉以393 nm (7F05L6躍遷)為光源激發所得之發射光譜包含595 nm之5D07F1 及615 nm之5D07F2躍遷放光。其發射光譜換算得到的CIE色度座標為(0.64 , 0.36),相當接近國際色度之座標準紅光範圍,且其紅光發光強度為商業螢光粉ZnS:Mn2+,Te2+強度的2.5倍。
發射藍光之螢光體中,Na3YSi2O7:Tm3+螢光粉以354 nm為光源激發所得之放射光譜,除主波峰外其他範圍放光相當少。主波峰波長為455 nm且其半高寬相當狹窄,CIE國際色度座標為(0.16 , 0.04),色純度為92%;另一系列之Na3YSi2O7:Bi3+螢光粉體以308 nm(1S03P1躍遷)為光源激發,可得發射光譜中波長為386 nm(3P11S0躍遷)的寬廣放射峰,其CIE色度座標為(0.16 ,0.04), 亦接近CIE色度座標中之藍光範圍。
發射綠光之螢光體中,Na3YSi2O7:Tb3+螢光粉體於261 nm有一寬廣的4f-5d吸收峰,以及於300~500 nm間一系列的4f軌域特性吸收峰。Na3YSi2O7:Tb3+使用波長261 nm為光源激發所得的發射光譜以540 nm(5D47F5躍遷)最強,其放射光之CIE色度座標位於(0.22 , 0.73),接近綠光範圍。
Na3YSi2O7: Sm3+及Na3YSi2O7: Dy3+螢光粉則由於稀土離子5s5p 外層電子的屏蔽作用,使得4f 電子的躍遷受結晶場的影響相當有限,其光譜性質基本上與自由態的稀土離子相同,亦即摻雜Sm3+及Dy3+離子分別屬於橘黃色與近白光放射,並沒有太大的變化。
The object of this research was to use silicate oxide Na3YSi2O7 as the host material, doped with Eu3+, Tm3+, Dy3+, Sm3+, Tb3+, Bi3+ ions as the activator in order to get the phosphors with different emission light. The raw materials were mechanically activated by grinding in high energy vibromill followed by calcining at 1200 ℃ for 6 h. By using DTA-TGA, XRD, SEM, UV-visable spectra and PL spectra, the characterization of structure, morphology of powders and photo-luminescent properties of phosphors were analyzed.
In Na3YSi2O7:Eu3+ phosphors with red light emission, by using the light source at 393 nm (7F05L6 transition), the emission spectra of the phosphors had narrow peaks at 595 nm (5D07F1 transition) and 615 nm (5D07F2 transition) originated from intra-4f transitions. The 5D07F2 emission intensity was stronger than 5D07F1. The emission intensity of red light was two times higher than commercial phosphors ZnS:Mn2+,Te2+. The CIE chromaticity coordinates of the Na3YSi2O7:Eu3+ phosphors were (0.64 , 0.36) which was close to NTSC system standard red chromaticity.
In Na3YSi2O7:Tm3+ phosphors with blue light emission, by using the light source at 354 nm, the emission spectra had major narrow peak at 455 nm with a sharp FWHM. The CIE chromaticity coordinates of the Na3YSi2O7:Tm3+ phosphors were (0.16 , 0.04) which was close to NTSC system standard blue chromaticity with great color purity about 92.5%. In Na3YSi2O7:Bi3+ phosphors with blue light emission, by using the light source at 308 nm(1S03P1 transition), the emission spectra had a board band at 386 nm. The CIE chromaticity coordinates of the Na3YSi2O7:Bi3+ phosphors were (0.16 , 0.04) which was close to NTSC system standard blue chromaticity.
In Na3YSi2O7:Tb3+ phosphors with green light emission, the excitation spectra had a board band at 261 nm which could be ascribed to 4f-5d transition and the sharp peaks in the range from 300 to 500 nm were associated with typical intra-4f transitions. The dominant emission peak was at 540 nm(5D47F5 transition). The CIE chromaticity coordinates of the Na3YSi2O7:Tb3+ phosphors were (0.22 , 0.73) which was close to NTSC system standard green chromaticity.
However, the valence electrons of trivalent rare earth ions were shielded by the 5s and 5p outer electrons, they were weakly affected by ligand ions in crystals, so the features of optical spectra of the most phosphors doped with trivalent rare earth ions, such as Na3YSi2O7: Sm3+ and Na3YSi2O7: Dy3+ were similar to those expected for free ions.
[1] 楊素華, 科學發展, 358期,(2002).
[2] A. A. Talin, K. A. Dean, J. E. Jaskie,“Field emission displays: a critical review”, Solid. State. Electron., 45, 963-976, (2001).
[3] C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, G. Y. Hong,“Phosphors for plasma panels”, J. Alloy Compd., 311, 33-39, (2000).
[4] S. Itoh, H. Toki, Y. Sato, K. Morimoto, T. Kishino,“The ZnGa204 Phosphor for Low-Voltage Blue Cathodoluminescence” J. Electrochem. Soc., 138, 1509, (1991).
[5] S. Itoh, M. Yokoyama, K. Morimoto,“Poisonous gas effects on the emission of oxide-coated cathodes” J. Vac. Sci. Technol., A5, 3430, (1987).
[6] L. D. Carlos, V. d. Z. Bermudez, R. A. S. Ferreira,“Multi-wavelength europium-based hybrid phosphors” J. Non-Cryst. Solids, 247, 203, (1999).
[7] K. N. Kim, H. K. Jung, H. D. Park, D. Kim,“High luminance of new green emitting phosphor, Mg2SnO4:Mn” J. Lumin., 99, 169, (2002).
[8] F. S. Liu, B. J. Sun, J. K. Liang, Q. L. Liu, J. Luo, Y. Zhang, L. X. Wang, J. N. Yao, G. H. Rao,“Optical properties of (Y1-xTmx)3GaO6 and subsolidus phase relation of Y2O3–Ga2O3–Tm2O3” J. Solid. State. Chem., 178, 1064, (2005).
[9] A. A. S. Alvani, F. Moztarzadeh, A. A. Sarabi,“Preparation and properties of long afterglow in alkaline earth silicate phosphors co-doped by Eu2O3 and Dy2O3” J. Lumin., 115, 147, (2005).
[10] V. B. Bhatkar, S. K. Omanwar, S. V. Moharil,“Combustion synthesis of silicate phosphors” Opt. Mater., 29, 1066, (2007).
[11] S. Kousaka, K. Toda, T. Ishigaki, K. Uematsu, M. Sato,“Development of New Red Phosphor Na3YSi2O7:Eu3+ for a white LED”, Key Engineering Materials, 421-422, 360-363, (2010).
[12] 楊俊英, 電子產業用螢光材料之應用調查, 工研院,(民國81年).
[13] G. Blasse,“Handbook on the Physics and Chemistry of Rare Earths”, North-Holland, 4, (1979).
[14] T. Hoshina,“Luminescence of Rare Earth Ions”, Sony Research Center Rep., (1983).
[15] R. C. Ropp,“Luminescence and the Solid State-2nd ed”, Amsterdam, (2004).
[16] G. Blasse, B. C. Grabmaier,“Luminescence Material”, Springer-Verlag, (1994).
[17] 李育群,“鍺酸鹽LaAlGe2O7 螢光粉光致發光特性研究”, 國立成功大學材料科學及工程學系博士論文, (民國96 年).
[18] 林心雁,“Mg2-xCaxLaTaO6 (X=0 ~ 2.0)系之光致發光特性研究”, 國立成功大學材料科學及工程學系碩士論文, (民國97年).
[19] 張翌誠,“Li3Ba2Gd3(MoO4)8:稀土離子螢光粉光致發光特性研究”, 國立成功大學材料科學及工程學系碩士論文, (民國98年).
[20] J. R. Lakowicz,“Principle of Fluorescence Spectroscopy-2nd ed”, New York, Kluwer Academic/Plenum Pub, (1999).
[21] A. J. Kenyon,“Recent developments in rare-earth doped materials for optoelectronics”, Pro. Quant. Electron., 26, 225-284, (2002).
[22] B. Henderson, G. F. Imbusch,“Optical Spectroscopy of Inorganic Solids”, Oxford, Clarendon, (1989).
[23] B. DiBartolo,“Energy Transfer Process in Condensed Matter”, New York, Plenum, (1984).
[24] G. Blasse, K. C. Bleijenberg, R. C. Powell,“Luminescence and Energy Transfer”, New York, Springer-Verlag, (1980).
[25] P. Atkins, L. Jones,“Chemistry molecules Matter and Change 3rd edition”, (1997).
[26] 劉如熹, 紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華科技,(2003).
[27] D. R. Vij,“Luminescence of solids”, New York, Plenum Press, (1998).
[28] R. D. Shannon, T. E. Gier, C. M. Foris, J. A. Nelen, D. E. Appleman,“Crystal Data for Some Sodium Rare Earth Silicates” Phys. Chem. Minerals, 5, 245, (1980).
[29] G. H. Dieke,“Spectra and energy levels of rare earth ions in crystals”,Interscience Publishers,New York, (1968).
[30] A. Jablonski,Born in Voskresenovka, Ukraine.Started studying physics at Kharkov University and continued after the 1st World War at Warsaw under S. Pienkowski. He received his PhD in 1930. In 1935 he suggested the famous diagram, commonly known under his name, which makes it possible to explain both the kinetics and spectra of fluorescence, phosphorescence and delayed fluorescence, (1898-1980).
[31] J. G. Sole, L. E. Bausa, D. Jaque,“An Introduction to the Optical Spectroscopy of Inorganic Solids”, WILEY, 22, (2005).
[32] R. D. Shaannon,“Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta. Cryst., A32, 751, (1976).
[33] D.-J. Kim, S.-H. hyun, S.-G. Kim, M. Yoshima,“Effective Ionic Radius of Y3+ Determined from Lattice Parameters of Fluoritr-Type HfO2 and ZrO2 Solid solutions”, J. Am. Ceram. Soc., 77[2], 597-599, (1994).
[34] G. Blasse,“On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+ –activated oxides”, J. Chem. Phys., 45(7), 2356, (1966).
[35] F. Shi, J. Meng, Y. Ren, Q. Su,“Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb, and Dy) compounds”, J. Phys. Chem. Solids, 59, 105, (1998).
[36] S. Freed,“Spectra of ions in fields of various symmetry in crystals and solutions”, Rev. Mod. Phys., 14, 105, (1942).
[37] B. S. Tsai, Y. H. Chang, Y. C. Chen,“Synthesis amd luminescent properties of MgIn2-xGaxO4:Eu3+ phosphors”, Electrochem.Solid-State Lett., 8(7), H55, (2005).
[38] B. R. Judd,“Hypersensitive transitions in rare-earth ions”, J. Chem.
Phys., 44, 839, (1966).
[39] G. S. Ofelt,“Intensities of Crystal Spectra of Rare-Earth Ions”, J. Chem. Phys., 37, 511, (1962).
[40] S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini, G. Gagherazzi,“Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis”, J. Mater. Chem., 12, 742, (2002).
[41] W. J. L. Oomen, A. M. A. v. Dongen,“Europium(III) in oxide glasses:Dependence of the emission spectrum upon glass composition”, J. Non-Cryst. Solids, 111, 205, (1989).
[42] R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, H. V. Seggern,“Photoluminescence propertities of nanocrystalline Y2O3:Eu3+ in different environments”, Scripta Mater., 44, 1213, (2001).
[43] S. Shionoya, W. M. Yen,“Phosphor Handbook”, CRC Press, Boca Raton, (1999).
[44] M. Inokuti, F. Hirayama,“Influence of energy transfer by the exchange mechanism on donor luminescence” J. Chem. Phys., 43, 1978, (1965).
[45] J. P. bRrainho, D. bAnanias, Z. Lin, A. Ferreira, L. D. Carlos, J. Rocha,J. Alloy Compd., 374, 185, (2004).
[46] Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang, Y.-J. Lina,“Green-Emitting Phosphor of LaAlGe2O7 : Tb3+ under Near-UV Irradiation”, Electrochem.Solid-State Lett., 9, H74-77, (2006).
[47] C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Luthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenkin, I. A. Shcherbakov, A. F. Zerrouk,“Excitation of the thulium 1G4 level in various crystal hosts” J. Lumin., 82, 137, (1999).
[48] I. Avgin, D. L. Huber,“Fluorescence dynamics in 1D systems with phonon-assisted energy transfer” J. Lumin., 83-84, 193, (1999).
[49] J. Hao, S. A. Studenikin, M. Cocivera,“Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis”
J. Lumin., 93, 313, (2001).
[50] J. Hao, M. Cocivera,”Cathodoluminescence of Sr2B5O9Cl thin films doped with Tm3+, Tb3+ and Mn2+” J. Phys. Condens. Matter, 14, 925, (2002).
[51] J. Hao, J. Gao, M. Cocivera,“Green, blue, and yellow cathodoluminescence of Ba2B5O9Cl thin-films doped with Tb3+, Tm3+, and Mn2+” Appl. Phys. Lett., 82(14), 2224, (2003).
[52] H. Choi, C. H. Kim, C. H. Pyun, S. J. Kim,“Luminescence of (Ca, La)S : Dy” J. Lumin., 82, 25, (1999).
[53] Q. Su, Z. pei, L. Chi, H. Zang, F. Zou,“The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission”, J. Alloy Compd., 25-27, 192, (1993).
[54] H. Zhang, X. Fu, S. Niu, Q. Xin,“Synthesis and luminescent properies of nanosized YVO4:Ln (Ln=Sm,Dy)”, J. Alloy Compd., 457, 61-65, (2008).
[55] K. M. Krishna, G. Anoop, M. K. Jayaraj,“Host Sensitized White Luminescence from ZnGa2O4:Dy3+ phosphor”, J. Electrochem. Soc., 154, J310-313, (2007).
[56] J. Kuang, Y. Liu, J. Zhang,“White light emitting long lasting phosphorescence in Dy3+ doped SrSiO3”, J. Solid. State. Chem., 179, 266-269, (2006).
[57] L. Nagli, D. Bunimovich, O. Gorodetsk, V. Molev,“The luminescence properties of Dy-doped figh silicate glass”, J. Non-Cryst. Solids, 217, 208, (1997).
[58] H. F. Brito, O. L. Malta, M. C. F. C. Felinto, E. E. S. Teotonio, J. F. S. Menezes, C. F. B. Silva, C. S. Tomiyama, C. A. A. Carvalho,“Luminescence investigation of the Sm(III)-β-diketonates with sulfoxides, phosphine oxides and amides ligands”, J. Alloy Compd., 344, 293-297, (2002).
[59] G. Blass, G.J.Dirksen,“A simple luminescence experiment suggesting rare earth ion pairing in the fluorite structure”, J. Electrochem. Soc., 127(4), 978, (1980).
[60] S. Kubota, T. Endo,“Synthesis and Luminescence Properties of La1-xTbxTa7O19”, J. Electrochem. Soc., 142, 4269, (1995).
[61] K. S. Thomas, S. Singh, G. H. Dieke,“Energy Levels of Tb3 + in LaCl3 andOther Chlorides”, J. Chem. Phys., 38, 2180, (1963).
[62] G. Blasse,Rev. Inorg. Chem., 15, 319, (1983).
[63] D. Jia, J. Zhu, B. Wu,“Trapping Centers in CaS:Bi3+ and CaS:Eu2+,Tm3+” J. Electrochem. Soc., 147(1), 386, (2000).
[64] A. A. Setlur, A. M. Srivastava,“The nature of Bi3+ luminescence in garnet hosts”, Opt. Mater., 29, 410-415, (2006).