簡易檢索 / 詳目顯示

研究生: 劉泓秀
Liu, Hung-Hsiu
論文名稱: 以三維逆向計算流體力學方法預測矩形空腔內之電池組的熱傳與流體流動特性
Prediction of Heat Transfer and Fluid Flow Characteristics for Battery Pack in a Cavity Using 3D Inverse CFD Method
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 137
中文關鍵詞: 逆向計算流體力學自然對流混合對流電池組散熱
外文關鍵詞: Inverse CFD, Natural convection, Mixing convection, Battery pack cooling
相關次數: 點閱:72下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用三維逆向計算流體力學方法結合最小平方法與過多的實驗溫度數據預測矩形空腔內之電池組的適當流動模型與電池模組的熱傳率估計值。此外,預測不同對流形式、開口方向與間距之電池組空腔模型內的流體流動與熱傳特性。透過對零方程式模型、標準 k-ε模型與RNG k-ε模型的測試發現,零方程式模型不論是在自然對流或是混合對流,皆具有較小的均方根誤差值,分別為0.41%與0.49%。另外利用所得的估計值與既有的經驗公式進行比較,以衡量流動模型的準確性。
    在自然對流的模型中,比較U型開口與只具有上方開口的空腔,發現前者可以降低電池組內的最大溫度約4.69 K。另外透過增加電池間距也可以有效的降低電池上方空間之聚熱現象與電池組最大溫度差,降低幅度約15%。在混合對流中,透過比較不同開口與風扇進風口位置之模型,發現改變間距對電池組的最大溫度與最大溫度差造成之影響較改變進出風口的位置明顯。而在相同的開口模型下,自然對流與混合對流的散熱效益差異極大,電池組之最大溫度可差距約20 K。

    In this paper, the battery pack in the rectangular cavity with natural and mixing convection, different opening location and cell spacing (d) is investigated. Both experimental and numerical studies are conducted to predict the proper flow model and the estimated heat transfer rate (Q) of the battery module.
    The results reveal that the zero-equation model is suitable for both natural and mixing convection in this scenario, which RMSE values of 0.41% and 0.49%, respectively. Additionally, the estimated heat transfer coefficients (h ̅_ck) are also compared with empirical correlations to validate accuracy. After proposing the correlations, the results closely match the estimated h ̅_ck.
    In the case of natural convection, changing the cooling configuration from top opening to U-type can reduce the maximum battery temperature by about 4.69 K. For mixing convection, it is found that increasing the cell spacing has more significant effect on the maximum temperature and the maximum temperature difference. Finally, the maximum temperature can drop significantly by 20 K when the convection type changes to mixing convection.

    摘要 I Extend AbstractII 致謝 IX 目錄 X 表目錄 XIV 圖目錄 XVII 符號說明XX 第一章 緒論1 1-1 研究背景1 1-2 文獻回顧3 1-3 研究目的與方法8 1-4 本文架構10 第二章 數值模擬與逆向方法12 2-1 計算流體力學簡介12 2-2 基本假設13 2-3 紊流數值理論與流動模型13 2-3-1 雷諾平均方程15 2-3-2 統御方程式16 2-3-3 零方程模型18 2-3-4 標準k-ε 模型19 2-3-5 RNG k-ε 模型21 2-4 逆向方法23 2-4-1 最小平方法25 2-4-2 均方根誤差分析26 第三章 實驗方法27 3-1 實驗設計27 3-2 實驗設備31 3-2-1 矩形空腔31 3-2-2 電池模組32 3-2-3 供電與資料擷取系統33 3-3 實驗變因35 3-4 實驗步驟39 第四章 計算流體力學軟體模擬分析44 4-1 軟體介紹44 4-2 三維模型45 4-3 網格45 4-3-1 網格品質46 4-3-2 網格獨立性48 4-4 邊界條件53 4-5 數值計算方法55 第五章 結果與討論57 5-1 流動模型選定57 5-1-1 自然對流59 5-1-2 混合對流62 5-2 經驗公式修正65 5-3 在自然對流下不同變因所造成的影響68 5-3-1 開口位置68 5-3-2 電池間距69 5-4 在混合對流下不同變因所造成的影響76 5-4-1 開口與風扇位置76 5-4-2 電池間距81 5-5 不同對流形式的影響85 第六章 結論101 6-1 結論101 6-2 未來展望與建議102 第七章 參考文獻104 附錄 112

    [1] Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf E., Becker, W., Monforti-Ferrario, F., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S., Brandao De Melo, J., Oom, D., Branco, A., San-Miguel, J., Vignati, E., “GHG emissions of all world countries”. Publications Office of the European Union., 2023.
    [2] IEA, “CO2 Emissions in 2022”. IEA, 2023.
    [3] 行政院國家永續發展委員會, “臺灣 2050 淨零轉型「運具電動化及無碳化」關鍵戰略行動計畫”. 2023.
    [4] Liu, X., Chen, Z., Zhang, C., and Wu, J., “A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation”. Applied Energy, Vol. 123, 2014. pp. 263-272.
    [5] Thakur, A.K., Prabakaran, R., Elkadeem, M.R., Sharshir, S.W., Arıcı, M., Wang, C., Zhao, W., Hwang, J.-Y., and Saidur, R., “A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles”. Journal of Energy Storage, Vol. 32, 2020. p. 101771.
    [6] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., “Thermal runaway caused fire and explosion of lithium ion battery”. Journal of Power Sources, Vol. 208, 2012. pp. 210-224.
    [7] Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., and He, X., “Thermal runaway mechanism of lithium ion battery for electric vehicles: A review”. Energy Storage Materials, Vol. 10, 2018. pp. 246-267.
    [8] Pierri, E., Cirillo, V., Vietor, T., and Sorrentino, M., “Adopting a conversion design approach to maximize the energy density of battery packs in electric vehicles”. Energies, Vol. 14(7), 2021. p. 1939.
    [9] Kurfer, J., Westermeier, M., Tammer, C., and Reinhart, G., “Production of large-area lithium-ion cells – Preconditioning, cell stacking and quality assurance”. CIRP Annals, Vol. 61(1), 2012. pp. 1-4.
    [10] Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., and Lai, Y., “A critical review of battery thermal performance and liquid based battery thermal management”. Energy Conversion and Management, Vol. 182, 2019. pp. 262-281.
    [11] Jaguemont, J., Boulon, L., and Dubé, Y., “A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures”. Applied Energy, Vol. 164, 2016. pp. 99-114.
    [12] Kumar Thakur, A., Sathyamurthy, R., Velraj, R., Saidur, R., Pandey, A.K., Ma, Z., Singh, P., Hazra, S.K., Wafa Sharshir, S., Prabakaran, R., Kim, S.C., Panchal, S., and Ali, H.M., “A state-of-the art review on advancing battery thermal management systems for fast-charging”. Applied Thermal Engineering, Vol. 226, 2023. p. 120303.
    [13] Liaw, B.Y., Roth, E.P., Jungst, R.G., Nagasubramanian, G., Case, H.L., and Doughty, D.H., “Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells”. Journal of Power Sources, Vol. 119-121, 2003. pp. 874-886.
    [14] Pesaran, A.A., “Battery thermal models for hybrid vehicle simulations”. Journal of Power Sources, Vol. 110(2), 2002. pp. 377-382.
    [15] Arora, S., “Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies”. Journal of Power Sources, Vol. 400, 2018. pp. 621-640.
    [16] Saw, L., Tay, A., and Zhang, L.W. Thermal management of lithium-ion battery pack with liquid cooling. in 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). 2015. IEEE.
    [17] Javani, N., Dincer, I., Naterer, G.F., and Yilbas, B.S., “Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles”. International Journal of Heat and Mass Transfer, Vol. 72, 2014. pp. 690-703.
    [18] Verma, A., Shashidhara, S., and Rakshit, D., “A comparative study on battery thermal management using phase change material (PCM)”. Thermal Science and Engineering Progress, Vol. 11, 2019. pp. 74-83.
    [19] Jiang, Z.Y. and Qu, Z.G., “Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study”. Applied Energy, Vol. 242, 2019. pp. 378-392.
    [20] Tang, Z., Li, J., Liu, Z., and Cheng, J., “Thermal performance of a thermal management system with a thin plate and a slender tube for prismatic batteries”. International Journal of Energy Research, Vol. 45(4), 2021. pp. 5347-5358.
    [21] Hossain Ahmed, S., Kang, X., and Bade Shrestha, S., “Effects of temperature on internal resistances of lithium-ion batteries”. Journal of energy resources technology, Vol. 137(3), 2015. p. 031901.
    [22] Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., and Shang, W., “Temperature effect and thermal impact in lithium-ion batteries: A review”. Progress in Natural Science: Materials International, Vol. 28(6), 2018. pp. 653-666.
    [23] Barcellona, S., Colnago, S., Dotelli, G., Latorrata, S., and Piegari, L., “Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge”. Journal of Energy Storage, Vol. 50, 2022. p. 104658.
    [24] Karimi, G. and Li, X., “Thermal management of lithium-ion batteries for electric vehicles”. International Journal of Energy Research, Vol. 37(1), 2013. pp. 13-24.
    [25] Pesaran, A.A., “Battery thermal management in EV and HEVs: issues and solutions”. Battery Man, Vol. 43(5), 2001. pp. 34-49.
    [26] Rao, Z. and Wang, S., “A review of power battery thermal energy management”. Renewable and Sustainable Energy Reviews, Vol. 15(9), 2011. pp. 4554-4571.
    [27] Weragoda, D.M., Tian, G., Burkitbayev, A., Lo, K.-H., and Zhang, T., “A comprehensive review on heat pipe based battery thermal management systems”. Applied Thermal Engineering, Vol. 224, 2023. p. 120070.
    [28] Zhao, J., Rao, Z., Huo, Y., Liu, X., and Li, Y., “Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles”. Applied Thermal Engineering, Vol. 85, 2015. pp. 33-43.
    [29] Xu, X.M. and He, R., “Research on the heat dissipation performance of battery pack based on forced air cooling”. Journal of Power Sources, Vol. 240, 2013. pp. 33-41.
    [30] Wu, M.-S., “Multi-objective optimization of U-type air-cooled thermal management system for enhanced cooling behavior of lithium-ion battery pack”. Journal of Energy Storage, Vol. 56, 2022. pp. 106004.
    [31] Zhang, F., Liu, P., He, Y., and Li, S., “Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle”. Journal of Energy Storage, Vol. 52, 2022. p. 104678.
    [32] Li, X., He, F., and Ma, L., “Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation”. Journal of Power Sources, Vol. 238, 2013. pp. 395-402.
    [33] Yuce, B.E. and Pulat, E., “Forced, natural and mixed convection benchmark studies for indoor thermal environments”. International Communications in Heat and Mass Transfer, Vol. 92, 2018. pp. 1-14.
    [34] Sharma, A.K., Velusamy, K., and Balaji, C., “Turbulent natural convection in an enclosure with localized heating from below”. International Journal of Thermal Sciences, Vol. 46(12), 2007. pp. 1232-1241.
    [35] Aksouh, M., Mataoui, A., Seghouani, N., and Haddad, Z., “Rayeilgh number effect on the turbulent heat transfer within a parallelepiped cavity”. Thermal science, Vol. 15(suppl. 2), 2011. pp. 341-356.
    [36] Betts, P.L. and Bokhari, I.H., “Experiments on turbulent natural convection in an enclosed tall cavity”. International Journal of Heat and Fluid Flow, Vol. 21(6), 2000. pp. 675-683.
    [37] Qu, P., Cheng, J., Chen, Y., Li, Y., Li, W., and Tao, H., “Numerical and experimental investigation on heat transfer of multi-heat sources mounted on a fined radiator within embedded heat pipes in an electronic cabinet”. International Journal of Thermal Sciences, Vol. 183, 2023. p. 107833.
    [38] Launder, B.E. and Spalding, D.B., “The numerical computation of turbulent flows”. Computer Methods in Applied Mechanics and Engineering, Vol. 3(2), 1974. pp. 269-289.
    [39] Yakhot, V. and Orszag, S.A., “Renormalization-Group Analysis of Turbulence”. Physical Review Letters, Vol. 57(14), 1986. pp. 1722-1724.
    [40] Chen, H.-T., Chang, C.-W., Rashidi, S., Čespiva, J., and Yan, W.-M., “Natural convection heat transfer in isosceles prismatic roof with perforated partition and phase change material”. Thermal Science and Engineering Progress, Vol. 48, 2024. p. 102428.
    [41] Chen, H.-T., Hsu, M.-H., Huang, Y.-C., and Chang, K.-H., “Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin”. Numerical Heat Transfer, Part A: Applications, Vol. 84(6), 2023. pp. 641-658.
    [42] Chen, H.-T., Huang, Y.-C., Chen, K.-X., Chang, J.-R., and Yan, W.-M., “Experimental and numerical study of inverse natural convection-conduction problem in a fully partitioned cavity”. Numerical Heat Transfer, Part A: Applications. pp. 1-24.
    [43] Chen, H.-T., Su, W.-Y., Zheng, Y.-J., Yang, T.-S., and Chen, K.-X., “Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data”. Progress in Nuclear Energy, Vol. 153, 2022. p. 104425.
    [44] Drake, S.J., Martin, M., Wetz, D.A., Ostanek, J.K., Miller, S.P., Heinzel, J.M., and Jain, A., “Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements”. Journal of Power Sources, Vol. 285, 2015. pp. 266-273.
    [45] Karatas, O.B. and Sokmen, K.F., “Thermal optimization of intercellular distance in lithium-ion batteries and numerical analysis of the original honeycomb metal integrated battery pack”. Journal of Energy Storage, Vol. 55, 2022. p. 105705.
    [46] Chen, K., Chen, Y., She, Y., Song, M., Wang, S., and Chen, L., “Construction of effective symmetrical air-cooled system for battery thermal management”. Applied Thermal Engineering, Vol. 166, 2020. p. 114679.
    [47] Xia, G., Cao, L., and Bi, G., “A review on battery thermal management in electric vehicle application”. Journal of Power Sources, Vol. 367, 2017. pp. 90-105.
    [48] Hefny, M.M. and Ooka, R., “CFD analysis of pollutant dispersion around buildings: Effect of cell geometry”. Building and Environment, Vol. 44(8), 2009. pp. 1699-1706.
    [49] Patankar, S.V. and Spalding, D.B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”. International Journal of Heat and Mass Transfer, Vol. 15(10), 1972. pp. 1787-1806.
    [50] Ferziger, J.H., Perić, M., and Street, R.L., Computational methods for fluid dynamics. springer. 2019
    [51] Elenbaas, W., “Heat dissipation of parallel plates by free convection”. Physica, Vol. 9(1), 1942. pp. 1-28.
    [52] Arpaci, V., Salamet, A., Kao, S.-H., and Jaluria, Y., “Introduction to Heat Transfer”. Applied Mechanics Reviews, Vol. 55(2), 2002. pp. B37-B38.
    [53] Rohsenow, W.M., Hartnett, J.P., and Cho, Y.I., Handbook of heat transfer. Vol. 3. Mcgraw-hill New York. 1998
    [54] Behzadmehr, A., Galanis, N., and Laneville, A., “Low Reynolds number mixed convection in vertical tubes with uniform wall heat flux”. International Journal of Heat and Mass Transfer, Vol. 46(25), 2003. pp. 4823-4833.
    [55] Aung, W., Fletcher, L.S., and Sernas, V., “Developing laminar free convection between vertical flat plates with asymmetric heating”. International Journal of Heat and Mass Transfer, Vol. 15(11), 1972. pp. 2293-2308.
    [56] Oztop, H.F. and Dagtekin, I., “Mixed convection in two-sided lid-driven differentially heated square cavity”. International Journal of Heat and mass transfer, Vol. 47(8-9), 2004. pp. 1761-1769.
    [57] Fan, L., Khodadadi, J.M., and Pesaran, A.A., “A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles”. Journal of Power Sources, Vol. 238, 2013. pp. 301-312.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE