| 研究生: |
陳昱修 Chen, Yu-Hsiu |
|---|---|
| 論文名稱: |
鉬修飾金屬有機骨架晶體串接於奈米碳管應用於超電容器之負極 Molybdenum-Functionalized Metal–Organic Framework Crystals Interconnected by Carbon Nanotubes as Negative Electrodes for Supercapacitors |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 奈米複合材料 、奈米粒子 、後修飾 、擬電容材料 、以鋯為基底的金屬有機骨架 |
| 外文關鍵詞: | nanocomposite, nanoparticle, post-synthetic modification, pseudocapacitor, zirconium-based MOF |
| 相關次數: | 點閱:90 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal–organic framework, MOF) 為一系列由金屬節點以及有機小分子連結器所組成的奈米孔洞材料。MOF 有著許多優點,例如:高規律性且互相連通的奈米孔洞,以及遠高於其他孔洞性材料的比表面積。但 MOF 幾乎是電的絕緣體,且不具有良好的化學穩定性,阻礙了MOF 在電化學領域的應用。
因此,本研究將具備高度水穩定性之以鋯為基底的 MOF – MOF-808,生長在羧基化的多壁奈米碳管(COOH-functionalized MWCNT)上,形成MOF-808-CNT 奈米複材,此奈米複材可藉由調控 MOF-808 以及 CNT 比例,改變整體奈米複材的孔洞性、比表面積,以及導電度。接著,我們以後修飾法將空間分散的鉬(VI)安裝在 MOF-808-CNT 奈米複材的高孔洞MOF 結構中作為電化學活性位點,並進行電化學還原以生成限縮在 MOF孔洞中的鉬金屬奈米粒子。我們以這些鉬後修飾奈米複材製備修飾電極,於水溶液電解液中作為超電容負極材料。鉬後修飾奈米複材不但有鉬金屬奈米粒子提供電化學活性,更可透過 CNT 於 MOF 晶體間傳遞電子,而穩定且多孔的 MOF 骨架則扮演了防止鉬金屬奈米粒子團聚的作用。結合上述優點,所得奈米複合材料之儲能表現明顯優於單純鉬後修飾的MOF-808 以及 CNT。不僅如此,經過 2000 圈的充/放電循環後,此鉬後修飾奈米複材仍維持一定的儲能表現,展現了優異的長期穩定性。綜合上述優勢,本研究中的鉬後修飾奈米複材作為超電容負極材料十分具有潛力。
In this thesis, crystals of a water-stable Zr-based metal–organic framework (MOF),
MOF-808, are directly grown on the surface of carboxylic acid-functionalized
carbon nanotubes (CNT) to synthesize the nanocomposites with tunable MOF-toCNT ratios. The crystallinity, morphology, porosity, and electrical conductivity of
all nanocomposites are characterized. To install the electrochemically active sites
within the highly porous MOF framework, the obtained MOF-808-CNT
nanocomposites are further subjected to the functionalization of spatially dispersed
Mo(VI) sites by a self-limiting process followed by the electrochemical reduction
to generate the molybdenum nanoparticles confined within the MOF pore. Thin
films of these Mo-functionalized materials are served as the pseudocapacitive
materials in aqueous electrolytes and operated in a negative potential window. By
utilizing the electrochemically active molybdenum confined within the highly
porous MOF and the electronic conduction between MOF crystals facilitated by
CNT, the optimal Mo-functionalized nanocomposite can significantly outperform
both the Mo-functionalized MOF and Mo-functionalized CNT.
[1] J. H. Li, Y. C. Chen, Y. S. Wang, W. H. Ho, Y. J. Gu, C. H. Chuang, Y. D. Song , and C. W. Kung; Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal-Organic Framework (MOF) for All MOF-based Pseudocapacitors. ACS Appl. Energy Mater., 3, 6258-6267, 2020.
[2] Y. S. Chang, J. H. Li, Y. C. Chen, W. H. Ho, Y. D. Song , and C. W. Kung; Electrodeposition of Pore-Confined Cobalt in Metal–Organic Framework Thin Films toward Electrochemical H2O2 Detection. Electrochim. Acta, 347, 136276, 2020.
[3] T. E. Chang, C. H. Chuang , and C. W. Kung; An Iridium-Decorated Metal–Organic Framework for Electrocatalytic Oxidation of Nitrite. Electrochem. Commun., 122, 106899, 2021.
[4] Y. T. Chiang, Y. J. Gu, Y. D. Song, Y. C. Wang , and C. W. Kung; Ceriumbased Metal–Organic Framework as an Electrocatalyst for the Reductive Detection of Dopamine. Electrochem. Commun., 135, 107206, 2022.
[5] J. Y. Kim, K. H. Kim, S. H. Park , and K. B. Kim; Microwave-Polyol Synthesis of Nanocrystalline Ruthenium Oxide Nanoparticles on Carbon Nanotubes for Electrochemical Capacitors. Electrochim. Acta, 55, 8056-8061, 2010.
[6] L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef , and Y. Cui; Symmetrical MnO2–Carbon Nanotube–Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. ACS Nano, 5, 8904-8913, 2011.
[7] C. H. Chuang, J. H. Li, Y. C. Chen, Y. S. Wang , and C. W. Kung; RedoxHopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. J. Phys. Chem. C, 124, 20854-20863, 2020.
[8] C. H. Shen, C. H. Chuang, Y. J. Gu, W. H. Ho, Y. D. Song, Y. C. Chen, Y. C. Wang , and C. W. Kung; Cerium-based Metal–Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Appl. Mater. Interfaces, 13, 16418-16426, 2021.
[9] Y. C. Wang, Y. C. Chen, W. S. Chuang, J. H. Li, Y. S. Wang, C. H. Chuang, C. Y. Chen , and C. W. Kung; Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Appl. Nano Mater., 3, 9440-9448, 2020.
[10] Y. C. Chen, W. H. Chiang, D. Kurniawan, P. C. Yeh, K. i. Otake , and C. W. Kung; Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019.
[11] H. Noh, C. W. Kung, K. i. Otake, A. W. Peters, Z. Li, Y. Liao, X. Gong, O. K. Farha , and J. T. Hupp; Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum SulfideFunctionalized Metal–Organic Framework. ACS Catalysis, 8, 9848-9858, 2018.
[12] B. O'regan , and M. Grätzel; A Low-Cost, High-Efficiency Solar Cell based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740, 1991.
[13] A. Kojima, K. Teshima, Y. Shirai , and T. Miyasaka; Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 131, 6050-6051, 2009.
[14] P. Simon, and Y. Gogotsi; Materials for Electrochemical Capacitors. Nat. Mater., 7, 845-854, 2008.
[15] R. F. Service; New 'Supercapacitor' Promises to Pack More Electrical Punch. Science, 313, 902-905, 2006.
[16] K. Mizushima, P. C. Jones, P. J. Wiseman , and J. Goodenough; LixCoO2(0<X≤1): A New Cathode Material for Batteries of High Energy Density.
Solid State Ion., 171-174, 1981.
[17] M. M. Thackeray, W. I. F. David, P. G. Bruce , and J. B. Goodenough; Lithium Insertion into Manganese Spinels. Mater. Res. Bull., 18, 461-472, 1983.
[18] Z. Liu, S. Zhang, L. Wang, T. Wei, Z. Qiu , and Z. Fan; High‐Efficiency Utilization of Carbon Materials for Supercapacitors. Nano Select, 1, 244-262, 2020.
[19] K. Jost, G. Dion , and Y. Gogotsi; Textile Energy Storage in Perspective.J. Mater. Chem. A, 2, 10776-10787, 2014.
[20] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon , and W. Van Schalkwijk;
Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Mater. Renew. Sustain. Energy, 148-159, 2011.
[21] D. Choi, G. E. Blomgren , and P. N. Kumta; Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors. Adv. Mater., 18, 1178-1182, 2006.
[22] G. Wang, L. Zhang , and J. Zhang; A Review of Electrode Materials for
Electrochemical Supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012.
[23] H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. Wang, Y. Tong , and G. Yang; Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials. Nat. Commun., 4, 1-7, 2013.
[24] Q. Liao, N. Li, S. Jin, G. Yang , and C. Wang; All-Solid-State Symmetric
Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. ACS Nano, 9, 5310-5317, 2015.
[25] N. L. Wu; Nanocrystalline Oxide Supercapacitors. Mater. Chem. Phys., 75, 6-11, 2002.
[26] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park , and S. H. Chang; Symmetric Redox Supercapacitor with Conducting Polyaniline Electrodes. J. Power Sources, 103, 305-309, 2002.
[27] H. Wang, H. S. Casalongue, Y. Liang , and H. Dai; Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc., 132, 7472-7477, 2010.
[28] C. Xiang, M. Li, M. Zhi, A. Manivannan , and N. Wu; A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode. J. Power Sources, 226, 65-70, 2013.
[29] D. Majumdar, T. Maiyalagan , and Z. Jiang; Recent Progress in Ruthenium Oxide‐based Composites for Supercapacitor Applications. ChemElectroChem, 6, 4343-4372, 2019.
[30] Y. S. Wang, Y. C. Chen, J. H. Li , and C. W. Kung; Toward Metal–Organic‐Framework‐based Supercapacitors: Room‐Temperature Synthesis of Electrically Conducting MOF‐based Nanocomposites Decorated with Redox‐Active Manganese. Eur. J. Inorg. Chem., 2019, 3036-3044, 2019.
[31] T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong , and Y. Li; Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett., 14, 2522-2527, 2014.
[32] J. Zheng , and T. Jow; High Energy and High Power Density Electrochemical Capacitors. J. Power Sources, 62, 155-159, 1996.
[33] Z. H. Huang, Y. Song, D. Y. Feng, Z. Sun, X. Sun , and X. X. Liu; High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors. ACS Nano, 12, 3557-3567, 2018.
[34] Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song , and D. Shen; Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core–Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes. ACS Appl. Mater. Interfaces, 8, 9050-9058, 2016.
[35] B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E. B. Duoss, C. M. Spadaccini, M. A. Worsley , and Y. Li; Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule, 3, 459-470, 2019.
[36] M. N. Patel, X. Wang, B. Wilson, D. A. Ferrer, S. Dai, K. J. Stevenson , and K. P. Johnston; Hybrid MnO2–Disordered Mesoporous Carbon Nanocomposites: Synthesis and Characterization as Electrochemical Pseudocapacitor Electrodes. J. Mater. Chem., 20, 390-398, 2010.
[37] Y. Wang, S. F. Yu, C. Y. Sun, T. J. Zhu , and H. Y. Yang; MnO2/Onion-Like Carbon Nanocomposites for Pseudocapacitors. J. Mater. Chem., 22, 17584-17588, 2012.
[38] J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li, A. Hu, X. Li , and X. Huang; Large-Scale Uniform α-Co(OH)2 Long Nanowire Arrays Grown on Graphite as Pseudocapacitor Electrodes. ACS Appl. Mater. Interfaces, 3, 99-103, 2011.
[39] K. Deori, S. K. Ujjain, R. K. Sharma , and S. Deka; Morphology Controlled Synthesis of Nanoporous Co3O4 Nanostructures and Their Charge Storage Characteristics in Supercapacitors. ACS Appl. Mater. Interfaces, 5, 10665-10672, 2013.
[40] H. Cheng, Z. G. Lu, J. Q. Deng, C. Chung, K. Zhang , and Y. Y. Li; A Facile Method to Improve the High Rate Capability of Co3O4 Nanowire Array Electrodes. Nano Res., 3, 895-901, 2010.
[41] L. Wang, C. Lin, F. Zhang , and J. Jin; Phase Transformation Guided Single-Layer β-Co(OH)2 Nanosheets for Pseudocapacitive Electrodes. ACS Nano, 8, 3724-3734, 2014.
[42] H. Jiang, J. Ma, C.Z. Li, Mesoporous Carbon Incorporated Metal Oxide
Nanomaterials as Supercapacitor Electrodes. Adv. Mater., 24, 4197-4202, 2012.
[43] H. Jiang, P. S. Lee , and C. Li; 3D Carbon Based Nanostructures for Advanced Supercapacitors. Energy Environ. Sci., 6, 41-53, 2013.
[44] M. Yu, W. Qiu, F. Wang, T. Zhai, P. Fang, X. Lu , and Y. Tong; Three Dimensional Architectures: Design, Assembly and Application in Electrochemical Capacitors. J. Mater. Chem. A, 3, 15792-15823, 2015.
[45] S. Pal , and K. K. Chattopadhyay; Fabrication of Molybdenum Trioxide Nanobelts as High Performance Supercapacitor. Mater. Today: Proc., 5, 9776-9782, 2018.
[46] L. Huang, B. Yao, J. Sun, X. Gao, J. Wu, J. Wan, T. Li, Z. Hu , and J. Zhou; Highly Conductive and Flexible Molybdenum Oxide Nanopaper for High Volumetric Supercapacitor Electrode. J. Mater. Chem. A, 5, 2897-2903, 2017.
[47] X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M. S. Balogun , and Y. Tong; Oxygen‐Deficient Hematite Nanorods as High‐Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Adv. Mater., 26, 3148-3155, 2014.
[48] K. C. Ng, S. Zhang, C. Peng , and G. Z. Chen; Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs/SnO2 and CNTs/MnO2 Nanocomposites. J. Electrochem. Soc., 156, A846, 2009.
[49] M. Ghosh, V. Vijayakumar, R. Soni , and S. Kurungot; A Rationally Designed Self-Standing V2O5 Electrode for High Voltage Non-Aqueous All-Solid-State Symmetric (2.0 V) and Asymmetric (2.8 V) Supercapacitors. Nanoscale, 10, 8741-8751, 2018.
[50] J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh , and S. Xie; Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Adv. Funct. Mater., 23, 5074-5083, 2013.
[51] D. P. Dubal, S. Abdel-Azeim, N. R. Chodankar , and Y. K. Han; Molybdenum Nitride Nanocrystals Anchored on PhosphorusIncorporated Carbon Fabric as a Negative Electrode for HighPerformance Asymmetric Pseudocapacitor. iScience, 16, 50-62, 2019.
[52] J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi , and H. Hu; A High Performance Fiber-Shaped PEDOT@MnO2//C@Fe3O4 Asymmetric Supercapacitor for Wearable Electronics. J. Mater. Chem. A, 4, 14877-14883, 2016.
[53] J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen , and G. Shen; Flexible Asymmetric Supercapacitors Based Upon Co9S8 Nanorod//Co3O4@RuO2 Nanosheet Arrays on Carbon Cloth. ACS Nano, 7, 5453-5462, 2013.
[54] H. Furukawa, K. E. Cordova, M. O’Keeffe , and O. M. Yaghi; The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 1230444, 2013.
[55] S. Kitagawa; Metal–Organic Frameworks (MOFs). Chem. Soc. Rev., 43, 5415-5418, 2014.
[56] G. Férey; Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev., 37, 191-214, 2008.
[57] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp , and O. K. Farha; Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater., 1, 1-15, 2016.
[58] I. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans , and S. Kaskel; Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem. Int. Ed., 57, 13780-13783, 2018.
[59] M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp , and O. K. Farha; Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett., 3, 598-611, 2018.
[60] C. Pettinari , and A. Tombesi; Metal–Organic Frameworks for Carbon Dioxide Capture. MRS Energy Sustain., 7, 2020.
[61] T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha , and J. T. Hupp; Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017.
[62] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen , and J. T. Hupp; Metal–Organic Framework Materials as Catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009.
[63] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne , and J. T. Hupp; Metal–Organic Framework Materials as Chemical Sensors. Carbon, 112, 1105-1125, 2012.
[64] M. Yoon, R. Srirambalaji , and K. Kim; Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev., 112, 1196-1231, 2012.
[65] P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle , and G. Férey; Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem., 118, 6120-6124, 2006.
[66] K. M. Choi, H. M. Jeong, J. H. Park, Y. B. Zhang, J. K. Kang , and O. M. Yaghi; Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano, 8, 7451-7457, 2014.
[67] R. R. Salunkhe, Y. V. Kaneti , and Y. Yamauchi; Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 11, 5293-5308, 2017.
[68] J. F. Olorunyomi, S. T. Geh, R. A. Caruso , and C. M. Doherty; Metal– Organic Frameworks for Chemical Sensing Devices. Mater. Horiz., 8, 2387-2419, 2021.
[69] S. Yuan, J. S. Qin, C. T. Lollar , and H. C. Zhou; Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent.
Sci., 4, 440-450, 2018.
[70] Y. Bai, Y. Dou, L. H. Xie, W. Rutledge, J. R. Li , and H. C. Zhou; Zrbased Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev., 45, 2327-2367, 2016.
[71] C. H. Hendon, D. Tiana , and A. Walsh; Conductive Metal–Organic Frameworks and Networks: Fact or Fantasy? Phys. Chem. Chem. Phys., 14, 13120-13132, 2012.
[72] L. Sun, M. G. Campbell , and M. Dincă; Electrically Conductive Porous Metal–Organic Frameworks. Angew. Chem. Int. Ed., 55, 3566-3579, 2016.
[73] A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly , and H. P. Yoon; Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 343, 66-69, 2014.
[74] P. Stallinga; Electronic Transport in Organic Materials: Comparison of Band Theory with Percolation/(Variable Range) Hopping Theory. Adv. Mater., 23, 3356-3362, 2011.
[75] D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. l. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik , and M. Dincă; High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2. J. Am. Chem. Soc., 136, 8859-8862, 2014.
[76] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn , and M. Dincă; Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater., 16, 220-224, 2017.
[77] C. W. Kung, K. Otake, C. T. Buru, S. Goswami, Y. Cui, J. T. Hupp, A. M. Spokoyny , and O. K. Farha; Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc., 140, 3871-3875, 2018.
[78] C. W. Kung, P. C. Han, C. H. Chuang , and K. C. W. Wu; Electronically Conductive Metal–Organic Framework-based Materials. APL Mater., 7, 110902, 2019.
[79] J. H. Li, Y. S. Wang, Y. C. Chen , and C. W. Kung; Metal–Organic Frameworks toward Electrocatalytic Applications. Appl. Sci., 9, 2427, 2019.
[80] S. Goswami, I. Hod, J. D. Duan, C. W. Kung, M. Rimoldi, C. D. Malliakas, R. H. Palmer, O. K. Farha , and J. T. Hupp; Anisotropic Redox Conductivity within a Metal–Organic Framework Material. J. Am. Chem. Soc., 141, 17696-17702, 2019.
[81] C. H. Shen, Y.-H. Chen, Y. C. Wang, T. E. Chang, Y. L. Chen , and C. W. Kung; Probing the Electronic and Ionic Transport in Topologically Distinct Redox-Active Metal–Organic Frameworks in Aqueous Electrolytes. Phys. Chem. Chem. Phys., 24, 9855-9865, 2022.
[82] M. Cai, Q. Loague , and A. J. Morris; Design Rules for Efficient Charge Transfer in Metal–Organic Framework Films: The Pore Size Effect. J. Phys. Chem. C, 11, 702-709, 2020.
[83] T. E. Chang, C. H. Chuang, Y. H. Chen, Y. C. Wang, Y. J. Gu , and C. W. Kung; Iridium‐Functionalized Metal–Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation. ChemCatChem.
[84] C. W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha , and J. T. Hupp; Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions to Enable Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces, 7, 28223-28230, 2015.
[85] B. A. Johnson, A. Bhunia , and S. Ott; Electrocatalytic Water Oxidation by a Molecular Catalyst Incorporated into a Metal–Organic Framework Thin Film. Dalton Trans., 46, 1382-1388, 2017.
[86] P. M. Usov, B. Huffman, C. C. Epley, M. C. Kessinger, J. Zhu, W. A. Maza , and A. J. Morris; Study of Electrocatalytic Properties of Metal–Organic Framework PCN-223 for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces, 9, 33539-33543, 2017.
[87] T. Y. Huang, C. W. Kung, Y. T. Liao, S. Y. Kao, M. Cheng, T. H. Chang, J. Henzie, H. R. Alamri, Z. A. Alothman , and Y. Yamauchi; Enhanced Charge Collection in MOF‐525–Pedot Nanotube Composites Enable Highly Sensitive Biosensing. Adv. Sci., 4, 1700261, 2017.
[88] B. A. Johnson, A. Bhunia, H. Fei, S. M. Cohen , and S. Ott; Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. J. Am. Chem. Soc., 140, 2985-2994, 2018.
[89] I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha , and J. T. Hupp; Bias-Switchable Permselectivity and Redox Catalytic Activity of a FerroceneFunctionalized, Thin-Film Metal–Organic Framework Compound. J. Phys. Chem. Lett., 6, 586-591, 2015.
[90] S. Lin, Y. Pineda‐Galvan, W. A. Maza, C. C. Epley, J. Zhu, M. C. Kessinger, Y. Pushkar , and A. J. Morris; Electrochemical Water Oxidation by a Catalyst‐Modified Metal–Organic Framework Thin Film. ChemSusChem, 10, 514-522, 2017.
[91] R. J. Marshall , and R. S. Forgan; Postsynthetic Modification of Zirconium Metal‐Organic Frameworks. Eur. J. Inorg. Chem., 2016, 4310-4331, 2016.
[92] S. Yuan, Y. P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T. F. Liu, X. Lian , and H. C. Zhou; Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angew. Chem. Int. Ed., 54, 14696-14700, 2015.
[93] R. C. Klet, T. C. Wang, L. E. Fernandez, D. G. Truhlar, J. T. Hupp , and O. K. Farha; Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks Via a Combined Atomic-Layer-Deposition-inMOF and Metal-Exchange Approach. Chem. Mater, 28, 1213-1219, 2016.
[94] Z. Li, A. W. Peters, A. E. Platero-Prats, J. Liu, C. W. Kung, H. Noh, M. R. DeStefano, N. M. Schweitzer, K. W. Chapman , and J. T. Hupp; FineTuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. J. Am. Chem. Soc., 139, 15251-15258, 2017.
[95] L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu , and N. Wang; A High-Capacitance Flexible Solid-State Supercapacitor Based on Polyaniline and Metal-Organic Framework (UiO-66) Composites. J. Power Sources, 379, 350-361, 2018.
[96] J. Shanahan, D. S. Kissel , and E. Sullivan; PANI@ UiO-66 and PANI@ UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega, 5, 6395-6404, 2020.
[97] S. Zhong, C. Zhan , and D. Cao; Zeolitic Imidazolate FrameworkDerived Nitrogen-Doped Porous Carbons as High Performance Supercapacitor Electrode Materials. Carbon, 85, 51-59, 2015.
[98] A. Indra, T. Song , and U. Paik; Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Adv. Mater., 30, 1705146, 2018.
[99] R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim , and Y. Yamauchi; Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 9, 6288-6296, 2015.
[100] W. Chaikittisilp, M. Hu, H. Wang, H. S. Huang, T. Fujita, K. C. W. Wu, L. C. Chen, Y. Yamauchi , and K. Ariga; Nanoporous Carbons through Direct Carbonization of a Zeolitic Imidazolate Framework for Supercapacitor Electrodes. Chem. Commun., 48, 7259-7261, 2012.
[101] Q. L. Zhu , and Q. Xu; Metal–Organic Framework Composites. Chem. Soc. Rev., 43, 5468-5512, 2014.
[102] C. M. Doherty, D. Buso, A. J. Hill, S. Furukawa, S. Kitagawa , and P. Falcaro; Using Functional Nano-and Microparticles for the Preparation of Metal–Organic Framework Composites with Novel Properties. Acc. Chem. Res., 47, 396-405, 2014.
[103] M. Jahan, Q. Bao , and K. P. Loh; Electrocatalytically Active Graphene–
Porphyrin MOF Composite for Oxygen Reduction Reaction. J. Am. Chem. Soc., 134, 6707-6713, 2012.
[104] C. Li, T. Zhang, J. Zhao, H. Liu, B. Zheng, Y. Gu, X. Yan, Y. Li, N. Lu , and Z. Zhang; Boosted Sensor Performance by Surface Modification of Bifunctional rht-Type Metal–Organic Framework with Nanosized Electrochemically Reduced Graphene Oxide. ACS Appl. Mater. Interfaces, 9, 2984-2994, 2017.
[105] S. Gonen, O. Lori, G. Cohen-Taguri , and L. Elbaz; Metal Organic Frameworks as a Catalyst for Oxygen Reduction: An Unexpected Outcome of a Highly Active Mn-MOF-based Catalyst Incorporated in Activated Carbon. Nanoscale, 10, 9634-9641, 2018.
[106] Y. Zhang, X. Bo, A. Nsabimana, C. Han, M. Li , and L. Guo; Electrocatalytically Active Cobalt-based Metal–Organic Framework with Incorporated Macroporous Carbon Composite for Electrochemical Applications. J. Mater. Chem. A, 3, 732-738, 2015.
[107] D. Micheroni, G. Lan , and W. Lin; Efficient Electrocatalytic Proton Reduction with Carbon Nanotube-Supported Metal–Organic Frameworks. J. Am. Chem. Soc., 140, 15591-15595, 2018.
[108] Y. Pu, W. Wu, J. Liu, T. Liu, F. Ding, J. Zhang , and Z. Tang; A Defective MOF Architecture Threaded by Interlaced Carbon Nanotubes for HighCycling Lithium–Sulfur Batteries. RSC Adv., 8, 18604-18612, 2018.
[109] H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson , and O. M. Yaghi; Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc., 136, 4369-4381, 2014.
[110] M. Lammert, H. Reinsch, C. Murray, M. Wharmby, H. Terraschke , and N. Stock; Synthesis and Structure of Zr(IV)-and Ce(IV)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Trans., 45, 18822-18826, 2016.
[111] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga , and K. P. Lillerud; A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc., 130, 13850-13851, 2008.
[112] W. H. Ho, T. Y. Chen, K. i. Otake, Y. C. Chen, Y. S. Wang, J. H. Li, H. Y. Chen , and C. W. Kung; Polyoxometalate Adsorbed in a Metal–Organic Framework for Electrocatalytic Dopamine Oxidation. Chem. Commun., 56, 11763-11766, 2020.
[113] J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp , and O. K. Farha; Are Zr6-based MOFs Water Stable? LinkerM Hydrolysis vs. Capillary-Force-Driven Channel Collapse. Chem. Commun., 50, 8944-8946, 2014.
[114] W. H. Ho, S. C. Li, Y. C. Wang, T. E. Chang, Y. T. Chiang, Y. P. Li , and C. W. Kung; Proton-Conductive Cerium-based Metal–OrganicM Frameworks. ACS Appl. Mater. Interfaces, 13, 55358-55366, 2021.
[115] T. C. Wang, A. M. Wright, W. J. Hoover, K. J. Stoffel, R. K. Richardson, S. Rodriguez, R. C. Flores, J. P. Siegfried, N. A. Vermeulen , and P. E. Fuller; Surviving under Pressure: The Role of Solvent, Crystal Size, and Morphology During Pelletization of Metal–Organic Frameworks. ACS Appl. Mater. Interfaces, 13, 52106-52112, 2021.
[116] B. Villoria‐del‐Álamo, S. Rojas‐Buzo, P. García‐García , and A. Corma; Zr‐MOF‐808 as Catalyst for Amide Esterification. Chem. Eur. J., 27, 4588-4598, 2021.
[117] Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang , and X. Guo; Facile Synthesis of Morphology and SizeControlled Zirconium Metal–Organic Framework UiO-66: The Role of Hydrofluoric Acid in Crystallization. CrystEngComm, 17, 6434-6440, 2015.
[118] S. A. Ntim, O. Sae-Khow, F. A. Witzmann , and S. Mitra; Effects of Polymer Wrapping and Covalent Functionalization on the Stability of Mwcnt in Aqueous Dispersions. J. Colloid Interface Sci., 355, 383-388, 2011.
[119] R. Syed, S. Ghosh, P. Sastry, G. Sharma, R. Hubli , and J. Chakravartty; Electrodeposition of Thick Metallic Amorphous Molybdenum Coating from Aqueous Electrolyte. Surf. Coat, 261, 15-20, 2015.
[120] R. Syed, S. Ghosh, P. Sastry, G. Sharma, R. Hubli , and J. Chakravartty; Electrodeposition of Thick Metallic Amorphous Molybdenum Coating from Aqueous Electrolyte. Surf. Coat. Technol., 261, 15-20, 2015.
[121] T. J. Morley, L. Penner, P. Schaffer, T. J. Ruth, F. Bénard , and E. Asselin; The Deposition of Smooth Metallic Molybdenum from Aqueous Electrolytes Containing Molybdate Ions. Electrochem. Commun., 15, 78-80, 2012.
[122] S. N. Hasan, M. Xu , and E. Asselin; Electrosynthesis of Metallic Molybdenum from Water Deficient Solution Containing Molybdate Ions and High Concentrations of Acetate. Surf. Coat. Technol., 357, 567-574, 2019.
[123] R. Shimoni, W. He, I. Liberman , and I. Hod; Tuning of Redox Conductivity and Electrocatalytic Activity in Metal–Organic Framework Films Via Control of Defect Site Density. J. Phys. Chem. C, 123, 5531-5539, 2019.
[124] Z. Zhou, X.-F. Wu , and H. Hou; Electrospun Carbon Nanofibers Surface-Grown with Carbon Nanotubes and Polyaniline for Use as HighPerformance Electrode Materials of Supercapacitors. RSC Adv., 4, 23622-23629, 2014.
[125] H. Wang, F. Yin, B. Chen , and G. Li; Synthesis of an ε-MnO2/Metal–Organic-Framework Composite and Its Electrocatalysis Towards Oxygen Reduction Reaction in an Alkaline Electrolyte. J. Mater. Chem. A, 3, 16168-16176, 2015.
[126] J. Mao, L. Yang, P. Yu, X. Wei , and L. Mao; Electrocatalytic FourElectron Reduction of Oxygen with Copper(II)-based Metal-Organic Frameworks. Electrochem. Commun., 19, 29-31, 2012.
[127] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori , and N. S. Lewis; Solar Water Splitting Cells. Chem. Rev., 110, 6446-6473, 2010.
[128] W. Zhang, H. Li, C. J. Firby, M. Al-Hussein , and A. Y. Elezzabi; Oxygen-Vacancy-Tunable Electrochemical Properties of Electrodeposited Molybdenum Oxide Films. ACS Appl. Mater. Interfaces, 11, 20378-20385, 2019.
[129] M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos , and N. Stock; Cerium-based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chem. Commun., 51, 12578-12581, 2015.
[130] J. Jacobsen, A. Ienco, R. D'Amato, F. Costantino , and N. Stock; The Chemistry of Ce-based Metal–Organic Frameworks. Dalton Trans., 49, 16551-16586, 2020.
[131] M. Lammert, C. Glißmann, H. Reinsch , and N. Stock; Synthesis and
Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies. Cryst. Growth Des., 17, 1125-1131, 2017.
[132] J. Xiao , and S. Yang; Sequential Crystallization of Sea Urchin-Like Bimetallic (Ni, Co) Carbonate Hydroxide and Its Morphology Conserved Conversion to Porous NiCo2O4 Spinel for Pseudocapacitors. RSC Adv., 1, 588-595, 2011.
[133] G. Zhu, L. Yang, W. Wang, M. Ma, J. Zhang, H. Wen, D. Zheng , and Y. Yao; Hierarchical Three-Dimensional Manganese Doped Cobalt Phosphide Nanowire Decorated Nanosheet Cluster Arrays for HighPerformance Electrochemical Pseudocapacitor Electrodes. Chem. Commun., 54, 9234-9237, 2018.