| 研究生: |
黃建銘 Huang, Chien-Ming |
|---|---|
| 論文名稱: |
碳酸丙烯、二甲基甲醯胺及二甲基亞碸在BMIPF6中物理狀態之分子模擬 Molecular simulations of the physical state of propylene carbonate,N,N-dimethylformamide and dimethyl sulfoxide in BMIPF6 |
| 指導教授: |
施良垣
Shy, Liang-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 碳酸丙烯 、離子液體 |
| 外文關鍵詞: | Molecular simulations, BMIPF6 |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇以分子動力方法模擬稀釋劑碳酸丙烯(Propylene carbonate, PC)、二甲基甲醯胺(N,N-dimethylformamide, DMF)及二甲基亞碸(dimethyl sulfoxide,DMSO)加入離子液體1-butyl-3- methylimidazole hexafluorophosphate (BMIPF6) 後的擴散及導電性質,並以微觀的角度探討稀釋劑與BMI+、PF6-之作用力。模擬的溫度為300及340 K,稀釋劑之莫耳分率分別為0.15 和0.45。
結果顯示,模擬之擴散係數與比導電度值均隨著稀釋劑的含量增加而上升,且值與實驗值相當接近。自由陽離子與陰離子之機率隨稀釋劑含量增加而提升,其值約為71%(莫爾分率45%),其中以PC效果最好,可能是因為其介電常數值最大所致。BMI+離子周圍第一殼層PF6-之配位數隨稀釋劑的含量增加而減少,但稀釋劑配位數則遞增。此外,在模擬的溫度範圍內,溫度影響不大。
依據這些分子模擬,本篇描繪出稀釋劑與BMI+、PF6-離子周圍環境示意圖。這些圖清楚說明離子與稀釋劑的分布情形,對於實驗極具參考價值。
Molecular dynamics simulation method has been used to study the diffusion and conductivity properties for propylene carbonate(PC) , N,N-dimethylformamide(DMF) and dimethyl sulfoxide(DMSO) in ion liquid 1-butyl-3- methylimidazole hexafluorophosphate(BMIPF6) . The interactions between BMI+ and PF6- ions were also explored from a microscopic point of view. The simulation temperature is 300 and 340 K with diluent mole fraction of 0.15 and 0.45.
The simulated diffusion coefficient and specified conductivities increase with diluent. Their values agree quite well with experiments. The degree of BMIPF6 dissociation incereases with diluent content, which is about 71% at a mole fraction of 0.45. The effect is especially distinct when PC is used as diluent, owing to its high dielectric constant . The number of coordinating PF6- ions around BMI+ ions decreases with the adding of diluent. The number of coordinating diluent around BMI+ is opposite. The temperature effect at simulated condition is immaterial.
Based on the simulations, the surrounding around the diluent, BMI+ and PF6- are well depicted. These figures clearly illustrate the distribution of ion and diluent, which are believed to be valuable for experiments.
1. P. T. Anastas, J. B. Zimmerman, Environ. Sci. Technol., 2003, 37, 94A.
2. 孫亦文, 徐列鈞, 化工資訊 2001, 16, 46.
3. Walden P., Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800.
4. Hurley F. H., T. P. Wier, J. Electrochem. Soc., 1951, 98, 203.
5. R. A Carpio., King L. A.; Lindstrom R. E.; Nardi J. C.; Hussy C. L., J. Electrochem. Soc. , 1979, 126, 1644.
6. Wilkes, J. S.;Levisky, J. A.;Wilson, R. A.;Hussey, C. L., Inorg. Chem., 1982, 21, 1263.
7. Wilkes, J. S.; Zaworotko, M. J., J. Chem.Soc. Chem. Commun., 1992, 965.
8. Fuller, J.; Carlin, R. T., Osteryoung, R. A. J. Electrochem. Soc., 1997, 144, 3881-3885.
9. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft; R. F. De Souza, J. Dupont, Polyhedron, 1996, 15 1217.
10. Stegemann, H., Rhode, A., Reiche, A., Schnittke, A., Füllbier H., Electrochim. Acta., 1992, 37, 379.
11. Seddom K. R., J. Chem. Technol Biotechnol., 1997, 68, 351.
12. Sheldon R. A., Chem. Commum., 2001, 23, 2399.
13. Jianmin Z., Weize W. , Tao J., Haiziang G. , Zhimin L., Jun H., Buxing H., J. Chem. Eng. Data 2003, 48, 1315.
14. Mitsuhiro K., Tatsuya U., Takafumi A., Yoshiaki K., Chem. Lett. 2005, 34, 324.
15. Sergio M. U., M. C. C. Ribeiro, J. Chem. Phys. 2005, 122, 24511.
16. Liu Z., Huang S.,Wang W., J. Phys. Chem. B 2004, 108, 12978.
17. “Discover User Guide”, version 4.0., MSI: San Diego, Biosym Technologies, 1996.
18. 陳輝龍, 國立成功大學化學研究所碩士論文, 1995.
19. Theodoroa D. N., Suter U. W., Macromolecules, 1985, 18, 1206.
20. Bsskir J. N., Suter, U. W. Macromolecules, 1988, 21, 1877.
21. Borodin O., Smith G.D., Acta Polymer. 1994, 45, 259-293
22. Toda M., Kubo R., Saito N., Statistical Physics I, Equlibrium Statistical Mechanics, 2nd ed., Springer: Heidelberg, Germany, 1995
23. 鄭國志,國立成功大學化學研究所碩士論文, 2006.
24. 張嘉航,國立成功大學化學研究所, 2006.
25. Sun I. W., Wang S.P., Inorganica Chimica Acta, 2001, 320, 7.