簡易檢索 / 詳目顯示

研究生: 鄭祐昇
Cheng, You-Sheng
論文名稱: 電沉積鈀釕合金薄膜及其甲醇電氧化之催化探討
Co-electrodeposition of PdRu alloy thin film and its catalytic efficiency in methanol electro-oxidation
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: 電沉積鈀釕合金薄膜氧化還原置換甲醇電氧化催化
外文關鍵詞: Electrodeposition, PdRu alloy thin film, Redox replacement, Methanol oxidation catalyst
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電沉積的方法,在含銦錫氧化物的導電玻璃上製備鈀釕合金薄膜,並進一步用於甲醇電氧化的催化上,在製備方法上,可以改變鈀釕離子比例、沉積電位的改變、加入錯合劑三乙醇胺於電鍍液中與透過置換反應將合金中的釕原子置換出來,修飾上鈀原子。
    鈀釕合金薄膜的結構、組成、形貌變化以及催化效率,分別透過X光繞射儀(XRD)、X光能量分散式光譜儀(EDS)、掃描式電子顯微鏡(SEM)與循環伏安法(CV)進行偵測分析。
    從X光繞射儀顯示出鈀釕合金會因為三乙醇胺的加入而導致共沉積後的粒徑有變小的趨勢,該現象對於合金的表面積會增加。再根據甲醇電氧化效率量測結果,沉積電位為-0.3 V下製備出的鈀釕合金效果最佳,催化效率提升約4.8倍,另外含三乙醇胺的電鍍液中所製成的鈀釕合金薄膜,運用鈀原子氧化還原置換的步驟,將表面進行修飾,在Ru含量較高時,發現對於鈀釕合金在催化效率上提升約1.1倍,在合金中鈀的含量佔64.27%,為實驗中甲醇電氧化催化效率最佳鈀釕合金條件。

    In this study, We fabricate PdRu alloy thin film by the method of co-electrodeposition on an ITO coated glass (PdRu/ITO) and test its catalytic efficiency in methanol electro-oxidation. Our approaches include: deposition potential, ratio of ion concentration, concentration of triethanolamine (TEA), Pd redox replacement of Ru on the surface of the prepared PdRu alloy film. The phase structure, alloy compositions, morphologies of catalysts and catalytic efficiency are determined by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS),scanning electron microscope (SEM), and cyclic voltammetry (CV), respectively.
    X-ray diffraction shows that the particle size of PdRu alloy is smaller when triethanolamine is added to alloy the solution. It is beneficial to the increase of the surface area of the alloys when decreasing in particle size. According to catalyst efficiency, the most suitable potential for deposition of PdRu alloy film is -0.3 V. This series potential has the highest catalytic activity in methanol electro-oxidation compared with pure metal Pd. The PdRu alloy efficiency is 4.8 times higher than pure metal Pd. PdRu alloys with higher electrochemical surface areas associated with TEA agent after the surface has undergone Pd replacement are found by CV to have enhanced catalytic efficiency in this study. After Pd replacement, the alloy catalytic efficiency is 1.1 times higher than previous situation and this PdRu alloy with atomic ratio of 64.27% Pd is the best.

    目錄 摘要………………………………………………………………………………….………I Extend abstract………………………………………………………………...……………II 誌謝……………………………………………………………………………………...VIII 目錄…………………………………………………………………………..……………IX 表目錄……………………………………………………………………………………XII 圖目錄…………………………………………………………………………………...XIV 第一章 緒論………………………………………………………………………………..1 1-1 燃料電池………………………………………………………………………….1 1-1-1 燃料電池的歷史與演進………………………………………………….1 1-1-2 運作原理………………………………………………………………….2 1-1-3 燃料電池的種類………………………………………………………….3 1-1-4 燃料電池的優勢………………………………………………………….5 1-2 直接甲醇燃料電池(DMFCs) ……………………………………………………6 1-2-1 介紹……………………………………………………………………...6 1-2-2 主要組成構造…………………………………………………………...7 1-2-3 反應原理………………………………………………………………...9 1-2-4 極化現象……………………………………………………………….10 1-2-5 甲醇氧化機制………………………………………………………….11 1-3 研究動機與目的………………………………………………………………...12 第二章 實驗原理…………………………………………………………………………14 2-1 電催化原理……………………………………………………………………...14 2-1-1 電催化反應介紹………………………………………………………...14 2-1-2 電催化甲醇反應機制…………………………………………………...15 2-2 實驗原理………………………………………………………………………..17 2-2-1 Underpotential deposition (UPD) ………………………………………..17 2-2-2 Surface-Limited Redox Replacement (SLRR) …………………………..18 2-3 儀器原理………………………………………………………………………..19 2-3-1 循環伏安法(Cyclic Voltammetry,CV) ………………………………..19 2-3-2 定電位電解法(Chronoamperometry,CA) ……………………………...21 2-3-3 定電流電解法(Chronopotentiometry,CP) ……………………………..22 2-3-4 X-射線繞射分析儀(X-ray Diffractometer,XRD) ………………………23 2-3-5 能量分散式光譜分析儀(Energy Dispersive Spectroscopy,EDS). …….24 2-3-6 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) ……………25 第三章 實驗方法與步驟…………………………………………………………………26 3-1 實驗流程圖……………………………………………………………………...26 3-2 實驗藥品與儀器………………………………………………………………...27 3-3 實驗方法與步驟………………………………………………………………...28 3-3-1 三電極式與反應槽裝置………………………………………………...28 3-3-2 電鍍液配置……………………………………………………………...29 3-3-3 電沉積PdRu合金……………………………………………………….29 3-3-4 合金薄膜分析量測……………………………………………………...30 第四章 結果與討論………………………………………………………………………31 4-1 沉積電位對PdRu合金薄膜影響之探討………………………………………31 4-1-1鈀、釕以及混合液之循環伏安法之掃描………………………………31 4-1-2 XRD………………………………………………………………………38 4-1-3 PdRu合金組成分析……………………………………………………...45 4-1-4 PdRu合金形貌分析……………………………………………………...46 4-1-5甲醇電氧化……………………………………………………………….52 4-2 錯合劑TEA濃度影響鈀釕合金薄膜之探討………………………………….58 4-2-1介紹……………………………………………………………………….58 4-2-2循環伏安法分析………………………………………………………….59 4-2-3 XRD………………………………………………………………………62 4-2-4 PdRu合金組成分析……………………………………………………...65 4-2-5 PdRu合金形貌分析……………………………………………………...67 4-2-6甲醇電氧化……………………………………………………………….71 4-3 沉積電量影響鈀釕合金薄膜之探討…………………………………………...74 4-3-1介紹……………………………………………………………………….74 4-3-2 XRD………………………………………………………………………74 4-3-3 PdRu合金組成分析……………………………………………………...82 4-3-4 PdRu合金形貌分析……………………………………………………...83 4-3-5甲醇電氧化……………………………………………………………….86 4-4 PdRu合金置換反應……………………………………………………………..89 4-4-1 PdRu置換反應介紹……………………………………………………...89 4-4-2置換時間之影響………………………………………………………….91 4-4-3 XRD………………………………………………………………………93 4-4-4 PdRu合金組成分析……………………………………………………...94 4-4-5 PdRu合金形貌分析……………………………………………………...95 4-4-6甲醇電氧化……………………………………………………………….97 第五章 結論………………………………………………………………………………98 參考文獻…………………………………………………………………………………101 附錄………………………………………………………………………………………106

    [01] W. R. Grove, Philosophical Magazine, Taylor & Francis, vol. 92, pp. 3753-3756 (2012).
    [02] 詹舒斐, 陳仁仲, 王今方, 電解水基礎研究, 節水季刊, vol.21 (2008).
    [03] 衣寶廉, 燃料電池-高效、環保的發電方式. 五南圖書(2003).
    [04] 黃鎮江, 燃料電池. 全華科技(2003).
    [05] 楊志忠, 林頌恩, 韋文誠, 科學發展, vol. 367, pp. 30-33 (2003).
    [06] A. Kheirandish, M. S. Kazemi, M. Dahari, International Journal of Hydrogen Energy, vol. 39, pp.13276-13284 (2014).
    [07] 蔡國忠, 鄭博毅, 邱奕勳, 賴明源, 直接甲醇燃料電池供電系統的設計應用, 中國機械工程學會(2007).
    [08] N. Hashim, S. K. Kamarudin, and W. R. W. Daud, International Journal of Hydrogen Energy, vol. 34, pp. 8263-8629 (2009).
    [09] 王金燦, 黃銳堯, 質子交換膜燃料電池流場版設計研究, 中正嶺學報, vol. 37, pp. 79-86 (2009).
    [10] G. Hu, J. Fan, S. Chen, Y. Liu, and K. Cen, Journal of Power Sources, vol. 136, pp. 1-9 (2004).
    [11] W. Vielstich, Journal of the Brazilian Chemical Society, vol. 14, pp. 503-509 (2003).
    [12] 曾重仁, 蔡秉蒼, 燃料電池性能量測與實作, 教育部能源國家型科技人才培育計畫(2012).
    [13] 張迪惠, 賴政文, 閻辰安, 邱奕勛, and 沈信喬, 金屬雙極版之流道深度對質子交換膜燃料電池性能的影響, 朝陽科技大學報告 (2012).
    [14] J. Larminie, Fuel Cell Systems Explained, John Wiley & Sons Ltd (2003).
    [15] J. M. Tatibougt, Applied Catalysis A: General, vol. 148, pp. 213-252 (1997).
    [16] T. Jurzinsky, P. Kammerer, C. Cremers, K. Pinkwart, J. Tübke, Journal of Power Sources, vol. 303, pp. 182-193 (2016).
    [17] X. Wang, B. Tang, X. Huang, Y. Ma, and Z. Zhang, Journal of Alloys and Compounds, vol. 565, pp. 120-126 (2013).
    [18] L. S. Jou, J. K. Chang, T. J. Twhang, and I. W. Sun, Journal of The Electrochemical Society, vol. 156, pp. D193-D197 (2009).
    [19] H. Gharibi, F. Golmohammadi, and M. Kheirmand, Fuel Cells, vol. 13, pp. 987-1004 (2013).
    [20] M. G. Hosseini, M. Abdolmaleki, and S. Ashrafpoor, Chinese Journal of Catalysis, vol. 34, pp. 1712-1719 (2013).
    [21] J. Ju, X. Chen, Y. Shi, and D. Wu, Powder Technology, vol. 241, pp. 1-6 (2013).
    [22] Z. Yin, Y. Zhang, K. Chen, J. Li, W. Li, P. Tang, H. Zhao, Q. Zhu, X. Bao, and D. Ma, Scientific Reports, vol. 4, pp. 1-9 (2014).
    [23] F. Braun, A. M. Tarditi, and L. M. Cornaglia, Journal of Membrane Science, vol. 382, pp. 252-261 (2011).
    [24] M. Jayakumar, K. A. Venkatesan, R. Sudha, T. G. Srinivasan, and P. R. V. Rao, Materials Chemistry and Physics, vol. 128, pp. 141-150 (2011).
    [25] C. C. Tai, F. Y. Su, and I. W. Sun, Electrochimica Acta, vol. 50, pp. 5504-5509 (2005).
    [26] L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells-Fundamentals and Applications, vol. 1, pp. 5-39 (2001).
    [27] 陳重守, 沉積在金屬氧化物載體上之鉑金屬奈米粒對甲醇氧化反應之電催化特性研究, 國立交通大學博士論文 (2011).
    [28] A. A. Permyakova, B. Han, J. O. Jensen, N. J. Bjerrum, and S. H. Yang, The Journal of Physical Chemistry C, vol. 119, pp. 8023-8031 (2015).
    [29] L. L. Mickelson, and C. Friesen, Journal of the American Chemical Society, vol. 131, pp. 14879-14884 (2009).
    [30] C. J. Pelliccione, E. V. Timofeeva, J. P. Katsoudas, and C. U. Segre, The Journal of Physical Chemistry C, vol. 117, pp. 18904-18912 (2013).
    [31] B. Beden, F. Kadirgan, C. Lamy, and J. M. Leger, Journal of Electroanalytical Chemistry, vol. 125, pp. 89-103 (1981).
    [32] B. Beden, F. Kadirgan, C. Lamy, and J. M. Leger, Journal of Electroanalytical Chemistry, vol. 127, pp. 75-85 (1981).
    [33] J. Yang, Y. Xie, R. Wang, B. Jiang, C. Tian, G. Mu, J. Yin, B. Wang, and H. Fu, ACS Applied Materials & Interfaces, vol. 5, pp. 6571-6579 (2013).
    [34] J. Wu, S. Shan, J. Luo, P. Joseph, V. Petkov, and C. J. Zhong, ACS Applied Materials & Interfaces, vol. 7, pp. 25906-25913 (2015).
    [35] L. X. Ding, A. L. Wang, G. R. Li, Z. Q. Liu, W. X. Zhao, C. Y. Su, and Y. X. Tong, Journal of the American Chemical Society, vol. 134, pp. 5730-5733 (2012).
    [36] 吳樸偉, 單一原子層金屬M(Pt, Au, Pd, Ir)沉積修飾E-TEK商用觸媒Pt/C與PtRu/C研究成果報告, 行政院國家科學委員會專題研究計畫(2012).
    [37] S. Brankovic, Encyclopedia of Applied Electrochemistry, pp. 423-430 (2014).
    [38] H. B. Michaelson, Journal of Applied Physics, vol. 48, pp. 4729-4733 (1977).
    [39] J. Nutariya, M. Fayette, N. Dimitrov, and N. Vasiljevic, Electrochimica Acta, vol. 112, pp. 813-823 (2013).
    [40] S. Ambrozik, B. Rawlings, N. Vasiljevic, and N. Dimitrov, Electrochemistry Communications, vol. 44, pp. 19-22 (2014).
    [41] A. J. Bard, and L. R. Faulkner, 電化學方法原理與應用, John Wiley & Sons, Inc (2005).
    [42] 賴正耀, 1,8-萘二胺與苯胺共聚複合膜吸收銅離子濃度與導電率關係, 國立台北科技大學碩士論文(2007).
    [43] 陳韋仲, 奈米金屬修飾超微碳電極於電化學氣體感測器, 國立中興大學博士論文 (2014).
    [44] G. Inzelt, Encyclopedia of Applied Electrochemistry, pp. 207-214 (2014).
    [45] I. J. Suárez, T. F. Otero, and M. Márquez, The Journal of Physical Chemistry B, vol. 109, pp. 1723-1729 (2005).
    [46] A. W. Bott, Controlled Current Techniques, vol. 47906, pp. 125-127 (2000).
    [47] 林麗娟, 工業材料, vol. 86, pp. 100-109 (1994).
    [48] 陳藹然, and 張育唐, X-光繞射與布拉格定律, 科技部高瞻自然科學教學資源平台(2016).
    [49] M. A. Ivie II, Wet chemical synthesis strategies to develop aluminum manganese nanoparticles for high density magnetic recording, The University of Alabama (2010).
    [50] 葉品君, 奈米碳材複合薄膜修飾電極應用於電化學感測器之研究, 國立台北科技大學碩士論文(2013).
    [51] 羅聖全, 科學研習, vol. 52, pp. 2-4 (2013).
    [52] S. Dash, and N. Munichandraiah, Electrochimica Acta, vol. 180, pp. 339-352 (2015).
    [53] S. C. Satorre, M. Montiel, R. E. Cid, J. L. G. Fierro, E. Fatás, and P. Ocón, International Journal of Hydrogen Energy, vol. 41, pp. 8954-8962 (2016).
    [54] S. K. Gade, M. K. Keeling, A. P. Davidson, O. Hatlevik, and J. D. Way, International Journal of Hydrogen Energy, vol. 34, pp. 6484-6491 (2009).
    [55] B. Tao, J. Zhang, S. Hui, X. Chen, and L. Wan, Electrochimica Acta, vol. 55, pp. 5019-5023 (2010).
    [56] C. S. Sharma, R. Awasthi, R. N. Singh, and A. S. Sinha, Physical Chemistry Chemical Physics, vol. 15, pp. 20333-20344 (2013).
    [57] D. R. Lide, CRC Handbook of Chemistry and Physics: CRC Press, 85th edition , Boca Raton (2005).
    [58] K. T. Oppelt, J. Gasiorowski, D. A. M. Egbe, J. P. Kollender, M. Himmelsbach, A. W. Hassel, N. S. Sariciftci, and G. Knör, Journal of the American Chemical Society, vol. 136, pp. 12721-12729 (2014).
    [59] Y. Sun, Y. C. Hsieh, L. C. Chang, P. W. Wu, and J. F. Lee, Journal of Power Sources, vol. 277, pp. 116-123 (2015).
    [60] Z. Yan, J. Xie, and P. K. Shen, Journal of Power Sources, vol. 286, pp. 239-246 (2015).
    [61] J. I. Langford, and A. J. C. Wilson, Journal of Applied Crystallography, vol. 11, pp. 102-113 (1978).
    [62] A. R. Denton, and N. W. Ashcroft, Physical Review A, vol. 43, pp. 3161-3164 (1991).

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE