| 研究生: |
張鈞堯 Chang, Jun-Yao |
|---|---|
| 論文名稱: |
設計及合成醣類配體以應用於蛋白質上之修飾 Synthesis of sugar-based ligands to study their ligand-receptor recognitions: applications toward lysosomal storage diseases |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan 鄭偉杰 Cheng, Wei-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 藥物遞送 、配體受體介導的攝取 、攝取效率 、多價配體 、溶小體貯積症 、酵素替代療法 、血腦屏障 (BBB) 、細胞穿膜肽 (CPP) 、甘露糖受體 、甘露糖-6-磷酸受體 (M6PR) 、聚(丙烯酰胺) 、LYTAC 方法 、黏多糖病I型 (MPS I) 、黏多糖病II型 (MPS II) 、α-甘露糖苷酶缺乏症概念性驗證 、生物架接 |
| 外文關鍵詞: | drug delivery, ligand receptor mediate uptake, uptake efficiency, multivalent ligand, lysosomal storage diseases, enzyme replacement therapy, blood-brain barrier (BBB), cell-penetrating peptide (CPP), mannose receptor, mannose-6-phosphate receptor (M6PR), poly(APMA), LYTAC approach, MPS I, MPS II, AM proof of concept, bio conjugation |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
配體和受體之間的識別在新藥發現和新藥傳遞策略中具有重要作用。眾所周知,蛋白藥物在體內循環過程中不穩定,並且其細胞攝取效率通常不理想。因此,通過細胞表面特定受體增強蛋白質進入靶細胞的滲透性,已成為現代配體-受體介導的傳遞裡一個重大的挑戰。
以醣為基礎的配體,如甘露糖-6-磷酸(M6P)和甘露糖及其相應的受體,包括M6P受體和甘露糖受體,被認為是重要的傳遞系統。然而,儘管這些糖基配體的多價性及其在蛋白質表面的位置或數量很重要,但這些化學材料(包括配體、多價配體及其在蛋白質表面的生物接合)的有效製備尚未被廣泛研究。
在本文中,主要關注的是甘露糖相關配體和多價配體的設計與合成。經過我們系統地製備不同的多價配體,這些配體在蛋白質的表面進行生物架接。這些複合物被應用於細胞實驗,包括攝取效率評估。酶替代療法(ERT)對於溶酶體貯積病(LSDs)的一個現有限制是由於蛋白質藥物上的M6P配體含量低,酶進入細胞的效率不高。作為概念驗證,我們利用含有α-甘露苷酶基糖蛋白和合成配體的各種複合物作為我們的模型系統,針對細胞性α-甘露苷症(AM)研究,這是一種目前了解較少的溶酶體貯積病(LSDs)。令人欣喜的是,這種化學架接方法能夠改善酶進入細胞的攝取。
在另一方面,溶酶體靶向嵌合體(LYTACs)通過將膜蛋白引導到溶酶體中進行降解,代表了一種主要方法。在本研究中,我們計劃利用甘露糖受體傳遞系統來擴展這一策略,這一系統尚未被完全研究。為了達到我們的目標,我們進行了設計和合成多價甘露糖配體的模型研究。
在最後一部分,通過類似的化學架接策略,將細胞穿透肽(CPPs)和螢光分子應用於蛋白藥物的接合,這使我們能夠研究蛋白藥物是否可以直接穿過血腦屏障(BBB)或通過鼻腔給藥來繞過它進入大腦。
The recognition between ligands and receptors plays an important role in new drug discovery and new drug delivery strategy.
As we know, protein drugs are unstable during circulation, and their cellular uptake efficiency is often unsatisfactory. Therefore, enhancing the penetration of proteins into targeted cells through specific receptors on the cell surface has become a significant scientific challenge in modern ligand-receptor mediated delivery.
Sugar-based ligands such as mannose-6-phosphate (M6P) and mannose as well as their corresponding receptors including M6P receptor and mannose receptor, respectively are considered important delivery systems. However, although their multivalence and the locations or numbers of sugar-based ligands on the protein surface are important, the efficient preparation of these chemical materials, including ligands, multivalent ligands, and their bio-conjugation on protein surface, has not been extensively investigated yet.
In this thesis, the main focus is on the design and synthesis of mannose-related ligands and multivalent ligands. After our systematic preparation of ligands with various multivalence, the bio-conjugation of these ligands on protein surface was performed and characterized. These adducts were applied for cell-based studies including uptake efficiency evaluations.
One of current limitations of enzyme replacement therapy (ERT) for lysosomal storage diseases (LSDs) is the inefficient uptake of enzymes into cells due to low abundance of M6P ligands on protein drugs. For a proof of concept, we utilized these various adducts containing alpha-mannosidase-based glycoproteins and synthetic ligands as our model systems toward the cellular alpha-mannosidosis (AM) study, one of LSDs but less understanding. To our delight, this chemical conjugation approach enables to improve enzyme uptake into cells.
On the other hand, lysosome-targeting chimeras (LYTACs) represent a primary method for degrading membrane proteins by directing them into lysosomes. In this study, we plan to extend this strategy by using the mannose receptor delivery system, which has not been completely investigated. To reach our goal, we did model studies for designing and synthesizing multivalent mannose ligands for this purpose.
In the last part, following the similar chemical conjugation strategy, cell-penetrating peptides (CPPs) and fluorophores were applied to conjugate on protein drugs, which allows us to study whether protein drugs can directly cross the blood-brain barrier (BBB) or bypass it via nasal delivery to access the brain.
(1) Guryanov, I.; Fiorucci, S.; Tennikova, T. Receptor-ligand interactions: Advanced biomedical applications. Mater Sci Eng C Mater Biol Appl 2016, 68, 890-903.
(2) Uings, I. J.; Farrow, S. N. Cell receptors and cell signalling. Mol Pathol 2000, 53, 295-299.
(3) Heldin, C. H.; Lu, B.; Evans, R.; Gutkind, J. S. Signals and Receptors. Cold Spring Harb Perspect Biol 2016, 8, a005900.
(4) Sun, A. Lysosomal storage disease overview. Ann Transl Med 2018, 6, 476.
(5) La Cognata, V.; Guarnaccia, M.; Polizzi, A.; Ruggieri, M.; Cavallaro, S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020, 9 (8).
(6) Parenti, G.; Andria, G.; Ballabio, A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 2015, 66, 471-486.
(7) Leal, A. F.; Nieto, W. G.; Candelo, E.; Pachajoa, H.; Almeciga-Diaz, C. J. Hematological Findings in Lysosomal Storage Disorders: A Perspective from the Medical Laboratory. EJIFCC 2022, 33, 28-42.
(8) Concolino, D.; Deodato, F.; Parini, R. Enzyme replacement therapy: efficacy and limitations. Ital J Pediatr 2018, 44, 120.
(9) Wraith, J. E. Limitations of enzyme replacement therapy: current and future. J Inherit Metab Dis 2006, 29, 442-447.
(10) Del Grosso, A.; Parlanti, G.; Mezzena, R.; Cecchini, M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022, 188, 114464.
(11) Bekes, M.; Langley, D. R.; Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 2022, 21, 181-200.
(12) Ahn, G.; Banik, S. M.; Miller, C. L.; Riley, N. M.; Cochran, J. R.; Bertozzi, C. R. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol 2021, 17, 937-946.
(13) Banik, S. M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N. M.; Bertozzi, C. R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020, 584, 291.
(14) Distler, J. J.; Guo, J. F.; Jourdian, G. W.; Srivastava, O. P.; Hindsgaul, O. The binding specificity of high and low molecular weight phosphomannosyl receptors from bovine testes. Inhibition studies with chemically synthesized 6-O-phosphorylated oligomannosides. J Biol Chem 1991, 266, 21687-21692.
(15) Feinberg, H.; Jegouzo, S. A. F.; Lasanajak, Y.; Smith, D. F.; Drickamer, K.; Weis, W. I.; Taylor, M. E. Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. J Biol Chem 2021, 296, 100368.
(16) Li, X.; Liao, C.; Xu, Y.; Lu, Q. H.; Chen, S.; Su, L.; Zou, Y.; Shao, F.; Lu, W.; Zhang, W. D. Configuration-Specific Antibody for Bacterial Heptosylation: An Antiadhesion Therapeutic Strategy. J Am Chem Soc 2023, 145, 322-333.
(17) Chao, C. S.; Lin, C. Y.; Mulani, S.; Hung, W. C.; Mong, K. K. Neighboring-group participation by C-2 ether functions in glycosylations directed by nitrile solvents. Chemistry 2011, 17, 12193-12202.
(18) Martinez-Avila, O.; Hijazi, K.; Marradi, M.; Clavel, C.; Campion, C.; Kelly, C.; Penades, S. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chemistry 2009, 15, 9874-9888.
(19) Geall, A. J.; Blagbrough, I. S. Homologation of polyamines in the rapid synthesis of lipospermine conjugates and related lipoplexes. Tetrahedron 2000, 56, 2449-2460.
(20) Das, R.; Mukhopadhyay, B. Chemical O-Glycosylations: An Overview. ChemistryOpen 2016, 5, 401-433.
(21) Dhara, D.; Dhara, A.; Murphy, P. V.; Mulard, L. A. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022, 521, 108644.
(22) Alabugin, I. V.; Kuhn, L.; Krivoshchapov, N. V.; Mehaffy, P.; Medvedev, M. G. Anomeric effect, hyperconjugation and electrostatics: lessons from complexity in a classic stereoelectronic phenomenon. Chem Soc Rev 2021, 50, 10212-10252.
(23) Ichikawa, Y.; Kaneno, D.; Saeki, N.; Minami, T.; Masuda, T.; Yoshida, K.; Kondo, T.; Ochi, R. Protecting group-free method for synthesis of glycosyl carbamates and an assessment of the anomeric effect of nitrogen in the carbamate group. Carbohyd Res 2021, 505.
(24) Banik, S. M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N. M.; Bertozzi, C. R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020, 584, 291-297.
(25) Liu, Y.; Marshall, J.; Li, Q.; Edwards, N.; Chen, G. Synthesis of novel bivalent mimetic ligands for mannose-6-phosphate receptors. Bioorg Med Chem Lett 2013, 23, 2328-2331.
(26) Jagadish, B.; Sankaranarayanan, R.; Xu, L.; Richards, R.; Vagner, J.; Hruby, V. J.; Gillies, R. J.; Mash, E. A. Squalene-derived flexible linkers for bioactive peptides. Bioorg Med Chem Lett 2007, 17, 3310-3313.
(27) Bianchi, A.; Arosio, D.; Perego, P.; De Cesare, M.; Carenini, N.; Zaffaroni, N.; De Matteo, M.; Manzoni, L. Design, synthesis and biological evaluation of novel dimeric and tetrameric cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Org Biomol Chem 2015, 13, 7530-7541.
(28) Zhu, Y. X.; Jiang, J. L.; Gumlaw, N. K.; Zhang, J. H.; Bercury, S. D.; Ziegler, R. J.; Lee, K.; Kudo, M.; Canfield, W. M.; Edmunds, T.; et al. Glycoengineered Acid α-Glucosidase With Improved Efficacy at Correcting the Metabolic Aberrations and Motor Function Deficits in a Mouse Model of Pompe Disease. Mol Ther 2009, 17, 954-963.
(29) Lizcano, A.; Secundino, I.; Dohrmann, S.; Corriden, R.; Rohena, C.; Diaz, S.; Ghosh, P.; Deng, L.; Nizet, V.; Varki, A. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 2017, 129, 3100-3110.
(30) Smith, R. A.; Zhang, Q. Region-specific mouse brain ganglioside distribution revealed by an improved isobaric aminoxyTMT labeling strategy with automated data processing. Anal Bioanal Chem 2023, 415, 7269-7279.
(31) Talaga, P.; Vialle, S.; Moreau, M. Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine 2002, 20, 2474-2484.
(32) Zhou, Q.; Kyazike, J.; Edmunds, T.; Higgins, E. Mannose 6-phosphate quantitation in glycoproteins using high-pH anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 2002, 306, 163-170.
(33) Syal, K.; Tadala, R. Modifications in trypsin digestion protocol for increasing the efficiency and coverage. Protein Pept Lett 2015, 22, 372-378.
(34) Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 1994, 32, 5-8.
(35) Murata, M.; Kawamura, A., Jr. Effect of molar ratio of fluorescent dye to IgG on the detection of lymphocyte surface immunoglobulins by immunofluorescence. Microbiol Immunol 1980, 24, 65-78.
(36) Schneider, H.; Deweid, L.; Pirzer, T.; Yanakieva, D.; Englert, S.; Becker, B.; Avrutina, O.; Kolmar, H. Dextramabs: A Novel Format of Antibody-Drug Conjugates Featuring a Multivalent Polysaccharide Scaffold. ChemistryOpen 2019, 8, 354-357.
(37) Huang, N.; Kolhatkar, R.; Eyobo, Y.; Sorci, L.; Rodionova, I.; Osterman, A. L.; Mackerell, A. D.; Zhang, H. Complexes of bacterial nicotinate mononucleotide adenylyltransferase with inhibitors: implication for structure-based drug design and improvement. J Med Chem 2010, 53, 5229-5239.
(38) Boeglin, D.; Bonnet, D.; Hibert, M. Solid-phase preparation of a pilot library derived from the 2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-amine scaffold. J Comb Chem 2007, 9, 487-500.
(39) Bonnet, D.; Margathe, J. F.; Radford, S.; Pflimlin, E.; Riche, S.; Doman, P.; Hibert, M.; Ganesan, A. Combinatorial aid for underprivileged scaffolds: solution and solid-phase strategies for a rapid and efficient access to novel aza-diketopiperazines (Aza-DKP). ACS Comb Sci 2012, 14, 323-334.
(40) Kappe, C. O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. Chem Soc Rev 2010, 39, 1280-1290.
(41) Heikinheimo, P.; Helland, R.; Leiros, H. K.; Leiros, I.; Karlsen, S.; Evjen, G.; Ravelli, R.; Schoehn, G.; Ruigrok, R.; Tollersrud, O. K. The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J Mol Biol 2003, 327, 631-644.
(42) Pardridge, W. M. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front Aging Neurosci 2019, 11, 373.
(43) Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001, 276, 5836-5840.
(44) Ghorai, S. M.; Deep, A.; Magoo, D.; Gupta, C.; Gupta, N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023, 15.
(45) Lin, T.; Liu, E.; He, H.; Shin, M. C.; Moon, C.; Yang, V. C.; Huang, Y. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm Sin B 2016, 6, 352-358.
(46) Manzoni, L.; Belvisi, L.; Arosio, D.; Bartolomeo, M. P.; Bianchi, A.; Brioschi, C.; Buonsanti, F.; Cabella, C.; Casagrande, C.; Civera, M. Synthesis of Gd and 68Ga Complexes in Conjugation with a Conformationally Optimized RGD Sequence as Potential MRI and PET Tumor-Imaging Probes. Chemmedchem 2012, 7, 1084-1093.
(47) Yuan, J. C.; You, Y. Z.; Lu, X.; Muzik, O.; Oupicky, D.; Peng, F. Y. Synthesis of poly[APMA]-DOTA-Cu conjugates for interventional radionuclide therapy of prostate cancer:: Assessment of intratumoral retention by micro-positron emission tomography. Mol Imaging 2007, 6, 10-17.
校內:2027-08-19公開