| 研究生: |
吳建憲 Wu, Chien-Hsien |
|---|---|
| 論文名稱: |
電驅動微流體晶片之設計分析與製造及其應用 Design, Analysis and Fabrication in Electrokinetically-Driven Microfluidic Chips and Their Applications |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 電驅動 、微流體晶片 、微機電系統 、電滲流 、電雙層 |
| 外文關鍵詞: | Electrokinetically-Driven, Microfluidic Chip, Electric Double Layer, Electroosmotic Flow, Micro-Electro-Mechanical System |
| 相關次數: | 點閱:114 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的主要在於設計功能性的電驅動微流體晶片。首先利用電滲流的理論基礎以數值模擬對設計進行分析,所使用數學模式包括(1)描述電雙層分布之Poisson-Boltzmann方程式(2)描述外加電場電位勢分布之Laplace方程式(3)描述電滲流流場之Navier-Stokes方程式,其中在動量方程式含有電動物體力項,以模擬電驅動效應。接著以微機電製程技術製作晶片進行實驗,最後以實驗結果與數值模擬進行比對,確保設計之可行。主要研究重點分為三項,茲說明如下:
一、以T型微管道中增加側管道對的模式,設計被動式微混合器,並建立應用電壓預測方法之理論模式。側管道對在此一研究中扮演了(1)提供垂直於流動方向的速度分量以增加側向擾動(2)增加混合層,使異質流體接觸區域倍增的角色。研究結果在增加二對側管道後混合效率即可以提升四倍達 ,而且使用預測電壓模式,不但減少使用的儀器,也大幅簡化使用的流程。
二、以修正後拉式注射法為基礎,建立可得到集中樣品外型、減少洩漏的推拉式注射法,並應用於以時間為基準的可變樣品體積之電驅動注射法。此一之電驅動注射技術更可與微流體轉轍器整合成實用的微流體分配器來輸送不同體積之樣品,做更進一步的反應或分析。與其他可變樣品體積注射技術比較,本文所提出之推拉式注射法具有使微管道幾何尺寸簡單化、更精確的樣品體積操控及更直接的電壓控制等優點。
三、以微管道中設置裸露電極的方式,建立改變電位勢分布的流體操控模式。透過調控外加電壓來改變電位勢分布,這樣的方式使得微流體元件可以具有微擴散器、微噴嘴、微混合器及無閥門開關等多功能的機制,成為實用性高的微制動器。與利用電容效應來達成流體操控的場效應流體操控方法比較,裸露電極的使用不需要絕緣層,可以有效且直接的應用在流體操控上。
本文所設計的微流體元件,皆具有良好的實用性,可以與其他電驅動微流體元件整合成實用的微流體系統,對於實驗室晶片未來的發展有正面的助益。
This dissertation focuses on the investigation of electrokinetically-driven microfluidic devices. The present work has employed both computational fluid dynamics techniques and experimental approach. The physical and mathematical models are based on (1) the Poission- Boltzmann equation for electric double layer (EDL) potential, (2) the Laplace equation for the externally applied electrostatic field, and (3) the Navier-Stokes equations modified to include the electrokinetic body force. The microfluidic chips are fabricated follow micro-electro-mechanical system (MEMS) fabrication processes. This research consists of three main parts as expressed in the following:
First, a T-shaped microchannel with incorporated side channels is used for passive micromixer design and a voltage prediction scheme is established. These side channels provide (1) transverse velocity components to the horizontal mixing streams, and also (2) increase the diffusion contact areas between the streams. The results reveal that the mixing efficiency can be enhanced to yield a fourfold improvement by incorporating two pairs of side channels into the mixing channel. The voltage prediction scheme greatly reduces the necessary instrumentation and simplifies the experimental set-up.
Next, the Pullback injection technique is modified to form a novel Push-pull injection technique. Through the appropriate control of the applied electrical voltage during the injection and dispensing process, the fluid experiences a push-pull effect, which produces a low leakage effect and more compact sample plug than that produced by other injection techniques. Together with push-pull effect an innovative microfluidic chip integrates a time-based variable-volume flow control technique with a delivery system. The T-form injection technique developed in this study has been integrated with a microswitch to form a functional microfluidic system for the dispensing of variable-volume samples for further processing and analysis. Compared with other microfluidic devices featuring a variable-volume injection technique, the push-pull injection technique developed in this study can be implemented using a compact geometry, consumes fewer reagents, and can be operated using a more straightforward voltage control scheme.
Finally, a bare electrodes flow control strategy is presented. The innovative microfluidic chip integrates multi-pairs bare electrodes with different applied voltages to perform the electrokinetically-driven flow control. Through the appropriate control of external applied voltages, the fluid experiences an electrokinetic effect. The effect makes the microdevice behave as nozzle, diffuser, mixer or valveless switch that acts as a functional actuator. The formulas presented in this study confirm that the fluid flow can be successfully controlled through the application of an appropriate electrical potential distribution. While compared with commonly used planar buried shielding electrodes, the bare electrodes allow direct optical observation during operation.
The developed microfluidic devices in this research provide practical applications and can be readily integrated within microfluidic system for the continuous monitoring and sample analysis. The development of this research is useful for the further advancement of μTAS.
Ajdara, A., Electro-osmosis on inhomogenously charged surfaces, Phys. Rev. Lett., 75, 755-758, 1995.
Alarie, J. P., Jacobson, S. C. and Ramsey, J. M., Electrophoretic injection bias in a microchip valving scheme, Electrophoresis, 22, 312-317, 2001.
Andreev, V. P., Dubrovsky, S. G. and Stepanov, Y. V., Mathematical modeling of capillary electrophoresis in rectangular channels, Journal of Microcolumn Separations, 9, 443-450, 1997.
Andreev, V. P. and Lisin, E. E., On the mathematical model of capillary electrophoresis, Chromatographia, 37, 202-210, 1993.
Ashton, R., Padala, C. and Kane, R. S., Microfluidic separation of DNA, Curr. Opin. Biotechnol., 14, 497-504, 2003.
Auroux, P. A., Reyes, D. R., Iossifidis, D. and Manz, A., Micro total analysis systems 2. Analytical standard operations and applications, Anal. Chem., 74, 2637-2652, 2002.
Baldock, S. J., Fielden, P. R., Goddard, N. J., Kretschmer, H. R., Prest, J. E. and Treves Brown, B. J., Novel variable volume injector for performing sample introduction in a miniaturised isotachophoresis device, J. Chromatogr. A, 1042, 181-188, 2004.
Bau, H. H., Zhong, J. and Yi, M., A minute magneto hydro dynamic (MHD) mixer, Sens. Actuator B-Chem., 79, 207-215, 2001.
Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C. and Jo, B. H., Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404, 588-590, 2000.
Bianchi, F., Ferrigno, R. and Girault, H. H., Finite element simulation of an electroosmotic-driven flow division at a T-Junction of microscale dimensions, Anal. Chem., 72, 1987-1993, 2000.
Blom, M. T., Chmela, E., Gardeniers, J. G. E., Tijssen, R., Elwenspoek, M. and van den Berg, A., Design and fabrication of a hydrodynamic chromatography chip, Sens. Actuator B-Chem., 82, 111-116, 2002.
Brenner, T., Glatzel, T., Zengerle, R. and Ducrée, J., Frequency-dependent transversal flow control in centrifugal microfluidics, Lab Chip, 2, 146-150, 2005.
Burgreen, D. and Nakache, F. R., Electrokinetic flow in ultrafine capillary slits, J. Phys. Chem., 68, 1084-1091, 1964.
Chang, S. and Cho, Y. H., Static micromixers using alternating whirls and lamination, J. Micromech. Microeng., 15, 1397-1405, 2005.
Chang, C. C. and Yang, R. J., Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks, J. Micromech. Microeng., 14, 550-558, 2004.
Chapman, D. L., A contribution to the theory of electrocapillarity, Philos. Mag., 25, 475-481, 1913.
Chen, C. H., Lin, H., Lele, S. K. and Santiago, J. G., Convective and absolute electrokinetic instability with conductivity gradients, J. Fluid Mech., 524, 263-303, 2005.
Chen, Z., Wang, J., Qian, S. and Bau, H. H., Thermally-actuated, phase change flow control for microfluidic systems, Lab Chip, 5, 1277-1285, 2005.
Chung, Y. C., Hsu, Y. L., Jen, C. P., Lu, M. C. and Lin, Y. C., Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab Chip, 1, 70-77, 2004.
Eddington, D. T. and Beebe, D. J., Flow control with hydrogels, Adv. Drug Deliv. Rev., 56, 199-210, 2004.
Effenhauser, C. S., Manz, A. and Widmer, H. M., Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem., 65, 2637-2642, 1993.
Effenhauser, C. S., Paulus, A., Manz, A. and Widmer, H. M., High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device, Anal. Chem., 66, 2949-2953, 1994.
Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., Computer simulations of electrokinetic injection techniques in microfluidic devices, Anal. Chem., 72, 3512-3517, 2000.
Everett, D. H., Basic principles of colloid science, The Royal Society of Chemistry, London, 1988.
Feynman, R. P., There’s plenty of room at the bottom, J. Microelectromech. Syst., 1, 60-66, 1992.
Fu, L. M. and Lin, C. H., Numerical analysis and experimental estimation of a low-leakage injection technique for capillary electrophoresis, Anal. Chem., 75, 5790-5796, 2003.
Fu, L. M. and Lin, C. H., High-resolution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniques, Electrophoresis, 25, 3652-3659, 2004.
Fu, L. M. and Yang, R. J., Low-voltage driven control in electrophoresis microchips by traveling electric field, Electrophoresis, 24, 1253-1260, 2003.
Fu, L. M., Yang, R. J. and Lee, G. B., Electrokinetic focusing injection methods on microfluidic devices, Anal. Chem., 75, 1905-1910, 2003.
Fu, L. M., Yang, R. J., Lee, G. B. and Liu, H. H., Electrokinetic injection techniques in microfluidic chips, Anal. Chem., 74, 5084-5091, 2002.
Fu, L. M., Yang, R. J., Lee, G. B. and Pan, Y. J., Multiple injection techniques for microfluidic sample handling, Electrophoresis, 24, 3026-3032, 2003.
Fu, L. M., Yang, R. J., Lin, C. H. and Chien, Y. S., A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency, Electrophoresis, 26, 1814-1824, 2005.
Gai, H., Yu, L., Dai, Z., Ma, Y. and Lin, B., Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip, Electrophoresis, 25, 1888-1894, 2004.
Gawron, A. J., Martin, R. S. and Lunte, S. M., Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis, Eur. J. Pharm. Sci., 14, 1-12, 2001.
Glasgow, I. and Aubry, N., Enhancement of microfluidic mixing using time pulsing, Lab Chip, 2, 114-120, 2003.
Gobby, D., Angeli, P. and Gavriilidis, A., Mixing characteristics of T-type microfluidic mixers, J. Micromech. Microeng., 11, 126-132, 2001.
Gouy, G., Constitution of the electric charge at the surface of an electrolyte, J. Phys., 9, 457-467, 1910.
Harrison, D. J., Fluri, K., Seilr, K., Fan, Z., Effenhauser, C. S. and Manz, A., Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science, 261, 895-897, 1993.
Harrison, D. J., Manz, A., Fan, Z., Lüdi, H. and Widmer, H. M., Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem., 64, 1926-1932, 1992.
Hasselbrink, E. F., Jr., Shepodd, T. J. and Rehm, J. E., High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths, Anal. Chem., 74, 4913-4918, 2002.
He, B., Burke, B. J., Zhang, X., Zhang, R. and Regnier, F. E., A picoliter-volume mixer for microfluidic analytical systems, Anal. Chem., 73, 1942-1947, 2001.
Heller, C., Principles of DNA separation with capillary electrophoresis, Electrophoresis, 22, 629-643, 2001.
Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., Kenny, T. W. and Garguilo M. G., Electroosmotic capillary flow with nonuniform zeta potential, Anal. Chem., 72, 1053-1057, 2000.
Hsu, J. P., Kao, C. Y., Tseng, S. and Chen, C. J., Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions, J. Colloid Interface Sci., 248, 176-184, 2002.
Huang, C. W. and Lee, G. B., Microautosamplers for discrete sample injection and dispensation, Electrophoresis, 26, 1807-1813, 2005.
Hunter, R. J., Zeta Potential in colloid science:principles and applications, Academic Press, Florida, 1981.
Hunter, R. J., Foundations of colloid science, Vol. 1, Oxford University Press, London, 1992.
Ivnitski, D., O'Neil, D. J., Gattuso, A., Schlicht, R., Calidonna, M. and Fisher, R., Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents, Biotechniques, 35, 862-869, 2003.
Jacobson, S. C., Culbertson, C. T., Daler, J. E. and Ramsey, J. M., Microchip structures for submillisecond electrophoresis, Anal. Chem., 70, 3476-3480, 1998.
Jacobson, S. C., Ermakov, S. V. and Ramsey, J. M., Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices, Anal. Chem., 71, 3273-3276, 1999.
Jacobson, S. C., Hergenröder, R., Koutny, L. B., Warmack, R. J. and Ramsey, J. M., Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices, Anal. Chem., 66, 1107-1113, 1994.
Jacobson, S. C. and Ramsey, J. M., Electrokinetic focusing in microfabricated channel structures, Anal. Chem., 69, 3212-3217, 1997.
Johnson, T. J. and Locascio, L. E., Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow, Lab Chip, 3, 135-140, 2002.
Johnson, T. J., Ross, D. and Locascio, L. E., Rapid microfluidic mixing, Anal. Chem., 74, 45-51, 2002.
Kamholz, A. E., Weigl, B. H., Finlayson, B. A. and Yager, P., Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor, Anal. Chem., 71, 5340-5347, 1999.
Kang, Y., Yang, C. and Huang, X., Electroosmotic flow in a capillary annulus with high zeta potentials, J. Colloid Interface Sci., 253, 285-294, 2002.
Khandurina, J., Chovan, T. and Guttman, A., Micropreparative fraction collection in microfluidic devices, Anal. Chem., 74, 1737-1740, 2002.
Kim, D. S., Lee, S. H., Kwon, T. H. and Ahn, C. H., A serpentine laminating micromixer combining splitting/recombination and advection, Lab Chip, 7, 739-747, 2005.
Koutuy, L. B., Schmalzing, D., Taylor, T. A. and Fuchs, M., Microchip electrophoretic immunoassay for serum cortisol, Anal. Chem., 68, 18-22, 1996.
Kuh, H. J. and Tseng, H. C., Transient electrokinetic flow in fine capillaries, J. Colloid Interface Sci., 242, 450-459, 2001.
Kuksenok, O., Yeomans, J. M. and Balazs, A. C., Creating localized mixing stations within microfluidic channels, Langmuir, 17, 7186-7190, 2001.
Lammertink, R. G. H., Schlautmann, S., Besselink, G. A. J. and Schasfoort, R. B. M., Recirculation of nanoliter volumes within microfluidic channels, Anal. Chem., 76, 3018-3022, 2004.
Lazar, I. M., Li, L., Yang, Y. and Karger, B. L., Microfluidic device for capillary electrochromatography-mass spectrometry, Electrophoresis, 24, 3655-3662, 2003.
Lee, G. B., Fu, L. M., Lin, C. H., Lee, C. Y. and Yang, R. J., Dispersion control in microfluidic chips by localized zeta potential variation using the filed effect, Electrophoresis, 25, 1879-1887, 2004.
Lee, G. B., Hung, C. I., Ke, B. J., Huang G. R. and Hwei, B. H., Micromachined pre-focused 1×N flow switches for continuous sample injection, J. Micromech. Microeng., 11, 567-573, 2001.
Lee, C. Y., Lee, G. B., Fu, L. M., Lee, K. H. and Yang, R. J., Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect, J. Micromech. Microeng., 14, 1390-1398, 2004.
Liao, C. S., Lee, G. B., Liu, H. S., Hsieh, T. M. and Luo, C. H., Miniature RT–PCR system for diagnosis of RNA-based viruses, Nucleic Acids Res., 33, e156 , 2005.
Lin, C. H., Fu, L. M. and Chien, Y. S., Microfluidic T-form mixer utilizing switching electroosmotic flow, Anal. Chem., 76, 5265-5272, 2004.
Lin, J. Y., Fu, L. M. and Yang, R. J., Numerical simulations of electrokinetic focusing in microfluidic chips, J. Micromech. Microeng., 12, 955-961, 2002.
Lin, C. H., Lee, G. B., Lin, Y. H. and Chang, G. L., A fast-prototyping process for fabrication of microfluidic systems on soda-lime glass, J. Micromech. Microeng., 11, 726-732, 2001.
Lin, C. H., Tsai, C. H. and Fu, L. M., A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions, J. Micromech. Microeng., 15, 935-943, 2005.
Lin, C. H., Yang, R. J., Tai, C. H., Lee, C. Y. and Fu, L. M., Double-L injection technique for high performance capillary electrophoresis detection in microfluidic chips, J. Micromech. Microeng., 14, 639-646, 2004.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., Passive mixing in a three-dimensional serpentine microchannel, J. Microelectromech. Syst., 9, 190-197, 2000.
Lu, L. H., Ryu, K. S. and Liu, C., A magnetic microstirrer and array for microfluidic mixing, J. Microelectromech. Syst., 11, 462-469, 2002.
Manz, A., Graber, N. and Widmer, H. M., Miniatured total chemical analysis systems: a novel concept for chemical sensing, Sens. Actuator B-Chem., 1, 244-248, 1990.
McClain, M. A., Culbertson, C. T., Jacobson, S. C. and Ramsey, J. M., Flow cytometry of escherichia coli on microfluidic devices, Anal. Chem., 73, 5334-5338, 2001.
Moctar, A. O. E., Aubry, N. and Batton, J., Electro-hydrodynamic micro-fluidic mixer, Lab Chip, 4, 273-280, 2003.
Müller, S. D., Mezić, I., Walther, J. H. and Koumoutsakos, P., Transverse momentum micromixer optimization with evolution strategies, Comput. Fluids, 33, 521-531, 2004.
Nguyen, N. T. and Wu, Z., Micromixers – a review, J. Micromech. Microeng., 15, R1-R16, 2005.
Niu, X. and Lee, Y. K., Efficient spatial-temporal chaotic mixing in microchannels, J. Micromech. Microeng., 13, 454-462, 2003.
Ocvirk, G., Munroe, M., Tang, T., Oleschuk, R., Westra, K. and Harrison, D. J., Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices, Electrophoresis, 21, 107-115, 2000.
Oddy, M. H., Santiago, J. G. and Mikkelsen, J. C., Electrokinetic instability micromixing, Anal. Chem., 73, 5822-5832, 2001.
Osuga, T., Comparison of growth of laminar flows in capillary: Poiseuille flow, electroosmotic flow and electroosmotic circulation, Jpn. J. Appl. Phys., 38, 6564-6567, 1999.
Park, S. J., Kim, J. K., Park, J., Chung, S., Chung, C. and Chang, J. K., Rapid three-dimensional passive rotation micromixer using the breakup process, J. Micromech. Microeng., 14, 6-14, 2004.
Patankar, N. A. and Hu, H. H., Numerical simulation of electroosmotic flow, Anal. Chem., 70, 1870-1881, 1998.
Peng, X. F., Peterson, G. P. and Wang, B. X., Frictional flow characteristics of water flowing through rectangular microchannels, Exp. Heat Transf., 7, 249-264, 1994.
Ramsey, J. M., The burgeoning power of the shrinking laboratory, Nat. Biotechnol., 17, 1061-1062, 1999.
Ramsey, J. D., Jacobson, S. C., Culbertson, C. T. and Ramsey, J. M., High-efficiency, two-dimensional separations of protein digests on microfluidic devices, Anal. Chem., 75, 3758-3764, 2003.
Ren, L. and Li, D., Theoretical studies of microfluidic dispensing processes , J. Colloid Interface Sci., 254, 384-395, 2002.
Rice, C. L. and Whitehead, R., Electrokinetic flow in a narrow cylindrical capillary, J. Phys. Chem., 69, 4017-4024, 1965.
Rocklin, R. D., Ramsey, R. S. and Ramsey, J. M., A microfabricated fluidic device for performing two-dimensional liquid-phase separations, Anal. Chem., 72, 5244-5249, 2000.
Russel, W. B., Saville, D. A. and Schowalter, W. R., Colloidal dispersions, Cambridge monographs on mechanics and applied mathematics, Cambridge University Press, Cambridge, 1989.
Saitoh, T., Sekino, A. and Hiraide, M., Manipulate fluid in microchannels with thermo-responsive film, Anal. Chim. Acta, 536, 179-182, 2005.
Schasfoort, R. B. M., Schlautmann, S., Hendrikse, J. and van den Berg, A., Field-effect flow control for microfabricated fluidic networks, Science, 286, 942-945, 1999.
Schrum, D. P., Culbertson, C. T., Jacobson, S. C. and Ramsey, J. M., Microchip flow cytometry using electrokinetic focusing, Anal. Chem., 71, 4173-4177, 1999.
Seiler, K., Harrison, D. J. and Manz, A., Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency, Anal. Chem., 65, 1481-1488, 1993.
Shi, Y. and Anderson, R. C., High-resolution single-stranded DNA analysis on 4.5 cm plastic electrophoretic microchannels, Electrophoresis, 24, 3371-3377, 2003.
Sia, S. K. and Whitesides, G. M., Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies, Electrophoresis, 24, 3563-3576, 2003.
Simões, E. W., Furlan, R., Leminski, R. E. B., Gongora-Rubio, M. R., Pereira, M. T., Morimoto, N. I. and Avilés, J. J. S., Microfluidic oscillator for gas flow control and measurement, Flow Meas. Instrum., 16, 7-12, 2005.
Sinton, D., Ren, L. and Li, D., A dynamic loading method for controlling on-chip microfluidic sample injection, J. Colloid Interface Sci., 266, 448-456, 2003.
Sniadecki, N. J., Lee, C. S., Sivanesan, P. and DeVoe, D. L., Induced pressure pumping in polymer microchannels via field-effect flow control, Anal. Chem., 76, 1942-1947, 2004.
Stoeber, B., Yang, Z., Liepmann, D. and Muller, S. J., Flow control in microdevices using thermally responsive triblock copolymers, J. Microelectromech. Syst., 14, 207-213, 2005.
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezić, I., Stone, H. A. and Whitesides, G. M., Chaotic mixer for microchannels, Science, 295, 647-651, 2002.
Tabeling, P., Chabert, M., Dodge, A., Jullien, C. and Okkels, F., Chaotic mixing in cross-channel micromixers, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 362, 987-1000, 2004.
Tabuchi, M. and Baba, Y., A triple-injection method for microchip electrophoresis, Electrophoresis, 26, 376-382, 2005.
Thomas, C. D., Jacobson, S. C. and Ramsey, J. M., Strategy for repetitive pinched injections on a microfluidic device, Anal. Chem., 76, 6053-6057, 2004.
Tiselius, A., A new apparatus for electrophoretic analysis of colloidal mixtures, Trans. Faraday Soc., 33, 524-530, 1937.
Tsai, C. H., Yang, R. J., Tai, C. H. and Fu, L. M., Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips, Electrophoresis, 26, 674-686, 2005.
Tuckermann, D. B. and Pease, R. F. W., High-performance heat sinking for VLSI, IEEE Electron Device Lett., 2, 126-129, 1981.
Urbanck, W., Zemel, J. N. and Bau, H. H., An investigation of the temperature dependence of Poiseuille numbers in microchannel flow, J. Micromech. Microeng., 3, 206-209, 1993.
van der Wouden, E. J., Heuser, T., Hermes, D. C., Oosterbroek, R. E., Gardeniers, J. G. E. and van den Berg, A., Field-effect control of electro-osmotic flow in microfluidic networks, Colloid Surf. A-Physicochem. Eng. Asp., 267, 110-116, 2005.
Verpoorte, E., Microfluidic chips for clinical and forensic analysis, Electrophoresis, 23, 677-712, 2002.
Vestad, T., Marr, D. W. M. and Oakey, J., Flow control for capillary-pumped microfluidic systems, J. Micromech. Microeng., 14, 1503-1506, 2004.
Wang, J. and Chatrathi, M. P., Microfabricated electrophoresis chip for bioassay of renal markers, Anal. Chem., 75, 525-529, 2003.
Wang, H., Iovenitti, P., Harvey, E. and Masood, S., Optimizing layout of obstacles for enhanced mixing in microchannels, Smart Mater. Struct., 11, 662-667, 2002.
Wang, H., Iovenitti, P., Harvey, E. and Masood, S., Numerical investigation of mixing in microchannels with patterned grooves, J. Micromech. Microeng., 13, 801-808, 2003.
Weibel, D. B., Kruithof, M., Potenta, S., Sia, S. K., Lee, A. and Whitesides, G. M., Torque-actuated valves for microfluidics, Anal. Chem., 77, 4726-4733, 2005.
Wong, S. H., Bryant, P., Ward, M. and Wharton, C., Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies, Sens. Actuator B-Chem., 95, 414-424, 2003.
Wood, J. M., Nicholson, K. G., Stephenson, I., Zambon, M., Newman, R. W., Major, D. L. and Podda, A., Experience with the clinical development of influenza vaccines for potential pandemics, Med. Microbiol. Immunol., 191, 197-201, 2002.
Woolley, A. T. and Mathies, R. A., Ultra-high-speed DNA sequencing using capillary electrophoresis chips, Anal. Chem., 67, 3676-3680, 1995.
Wu, Z. and Nguyen, N. T., Rapid mixing using two-phase hydraulic focusing in microchannels, Biomed. Microdevices, 7, 13-20, 2005.
Yang, R. J., Chang, C. C., Huang, S. B. and Lee, G. B., A new focusing model and switching approach for electrokinetic flow inside microchannels, J. Micromech. Microeng., 15, 2141-2148, 2005.
Yang, R. J., Fu, L. M. and Lee, G. B., Variable-volume-injection methods using electrokinetic focusing on microfluidic chips, J. Sep. Sci., 25, 996-1010, 2002.
Yang, C., Li, D. and Masliyah, J. H., Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat Mass Transf., 41, 4229-4249, 1998.
Yang, M., Yang, J., Li, C. W. and Zhao, J., Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip, Lab Chip, 3, 158-163, 2002.
Zant, P. V., Microchip fabrication: a practical guide to semiconductor processing, McGraw-Hill Inc., Ohio, 2000.
Zhou, X., Liu, D., Zhong, R., Dai, Z., Wu, D., Wang, H., Du, Y., Xia, Z., Zhang, L., Mei, X. and Lin, B., Determination of SARS-coronavirus by a microfluidic chip system, Electrophoresis, 25, 3032-3039, 2004.