| 研究生: |
俞昶 Yu, Chang-Ni |
|---|---|
| 論文名稱: |
αA水晶體蛋白突變株D69R與D69W伴護功能與熱集結之研究 The Chaperone-like Activity and Thermal Aggregation Studies of Mutant D69R and D69W αA-Crystallins |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 熱集結 、類似伴護活性 、定點突變 、αA水晶體蛋白 |
| 外文關鍵詞: | αA-crystallin, site-directed mutagenesis, chaperone-like activity, thermal aggregation |
| 相關次數: | 點閱:122 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
α水晶體蛋白是小熱休克性家族的一員。為了研究其結構與類似伴護活性之關係,我們利用定點突變將αA水晶體蛋白的Asp69位置突變成帶正電的Arg殘基和疏水性的Trp殘基。和重組的αA水晶體蛋白比較,突變的D69R和D69W顯示相似的二級與三級結構。ANS螢光顯示這兩個突變的蛋白質有較高的疏水性。突變D69R和重組的αA水晶體蛋白有相似的伴護活性,但是D69W已幾乎喪失其伴護活性。突變的D69R與D69W的熱穩定性低於天然的α水晶體蛋白與重組的αA水晶體蛋白。隨著預熱溫度的升高,重組的αA水晶體蛋白和D69R的伴護活性隨之增加,但是D69W仍然沒有伴護活性。因此,在αA水晶體蛋白中,此位置必須存在親水性殘基,以維持其結構與功能的完整性。
α-Crystallin is a members of the family of small-heat-shock proteins.To investigate the structure and chaperone-like activity relationship, wereplaced Asp69 in rat lens αA-crystallin with a positive charged Argresidue and with a hydrophobic Trp residue respectively by site-directedmutagenesis. In comparison with the recombinant αA-crystallin, themutant proteins D69R and D69W displayed similar secondary structureand tertiary structure. ANS fluorescence showed a little higherhydrophobicity for both mutant proteins. Mutant D69R showed similarchaperone-like activity as the recombinant αA-crystallin, whereas mutantD69W showed dramatic changes in the chaperone-like activity. Thermalstability of both D69R and D69W were lower than that of native andrecombinant αA-crystallin. The chaperone-like activity of recombinantαA-crystallin and D69R were enhanced with the increase of temperature,but D69W still showed little chaperone-like activity. Thus, a hydrophilicresidue must be preserved at this position to maintain its structural andfunctional integrity of αA-crystallin.
1. van Kamp G.J. and Hoenders H.J. (1973) The distribution of the soluble proteins in the calf lens. Exp. Eye Res. 17, 417-426.
2. Harding, J. J. and Dillen, K. J. (1976) Structural protein of the mammalian lens. Exp. Eye Res. 22, 1-73.
3. Berbers, G. A., Hoekman, W. A., Bloemendal, H., de Jong, W. W., Kleinschmidt, T., Braunitzer, G. (1984) Homology between the primary structures of the major bovine beta-crystallin chains. Eur. J. Biochem. 139, 467-479.
4. Slingsby, C., Bateman, O. A. (1990) Quaternary interactions in eye lens beta-crystallins: basic and acidic subunits of beta-crystallins favor heterologous association. Biochemistry 29, 6592-6599.
5. Johnson, M. S., Sutcliffe, M. J. and Blundell, T. L. (1990) Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. J. Mol. Evol. 30, 43-59.
6. Norledge, B. V., Hay, R. E., Bateman, O. A., Slingsby, C. and Driessen, H. P. (1997) Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two high TC γ-crystallins, γE and γF, with two low TC γ-crystallins, γB and γD. Exp. Eye Res. 65, 609-630.
7. van Der Ouderaa, F. J., de Jong, W. W., Hilderink, A., Bloemendal, H. (1974) The amino acid sequence of the alphaB2 chain of bovine alpha- crystallin., Eur. J. Biochem. 49, 157-168.
8. van Der Ouderaa, F. J., de Jong, W. W., Bloemendal, H. (1973) The amino acid sequence oh the alphaA2 chain of bovine alpha-crystallin., Eur. J. Biochem. 39, 207-222.
9. Bhat, S. P. and Nagineni, C. N. (1989) αB subunit of lens-specific protein α-crystallin is present in other ocular and non-ocular tissues. Biochem. Biophys. Res. Commun. 158, 319-325.
10. Srinivasan, A. N., Nagineni, C. N. and Bhat, S. P. (1992) αA- Crystallin is expressed in non-lenticular tissues. J. Biol. Chem. 267, 23337-23341.
11. Derham, B. K. and Harding, J. J. (1999) α-Crystallin as a molecular chaperone. Prog. Ret. Eye Res. 18, 463-509.
12. Lamba, O. P., Borchman, D., Sinha, S. K., Shah, J., Renugopalakrishnan, V. and Yappert, M. C. (1993) Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitative analysis and resolution by Fourier self-deconvolution and curve fit. Biochim. Biophys. Acta. 1163, 113-123.
13. Siezen, R. J., Bindels, J. G. and Hoenders, H. J. (1980) The quaternary structure of bovine a-crystallin. Efects of variation in alkaline pH, ionic strength, temperature and calcium ion concentration. Eur. J. Biochem. 111, 435-444.
14. Deretic, D., Aebersold, R. H., Morrison, H. D. and Papermaster, D. S. (1994) aA- and aB-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. J. Biol. Chem. 269, 16853-16861.
15. Longoni, S., James, P. and Chiesi, M. (1990) Cardiac alpha-crystallin. Isolation and identification. Mol. Cell Biochem. 97, 113-120.
16. Groenen, P. J., Merck, K. B., de Jong, W. W. and Bloemendal, H. (1994) Structure and modifications of the junior chaperone a-crystallin. From lens transparency to molecular pathology. Eur. J. Biochem. 225, 1-19.
17. Walsh, M. T., Sen, A. C., and Chakrabarti, B. (1991) Micellar subunit assembly in a three-layer model of oligomeric α-crystallin. J. Biol. Chem. 266, 20079-20084.
18. Wistow, G. J. (1993) A possible quaternary structure for crystallins and small heat-shock proteins. Exp. Eye Res. 56, 729-732.
19. Carver, A., Aquilina, J. A., Truscott, J. W. (1994) A possible chaperone-like quaternary structure for α-crystallin. Exp. Eye Res. 59, 231-234.
20. Ingolia, T. D. and Craig, E. A. (1982) Four small heat-shock proteins are related to each other and to mammalian α-crystallin. Proc. Natl. Acad. Sci. USA 79, 2360-2364.
21. Horwitz, J. (1992) α-Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449-10453.
22. Wang, K. and Spector, A. (1995) α-Crystallin can act as a chaperone under conditions of oxidative stress. Invest. Ophthalmol. Vis. Sci. 36, 311-321.
23. Borkman, R. F., Knight, G. and Obi, B. (1996) The molecular chaperone α-crystallin inhibits UV-induced protein aggregation. Exp. Eye Res. 62, 141-148.
24. Spector, A., Li, L. K., Augusteyn, R. C., Schneider, A., Freund, T. (1971) Alpha-crystallin, the isolation and characterization of distinct macromolecular fractions. Biochem. J. 124, 337-343.
25. Spector, A., Freund, T., Li, L. K., and Augusteyn, R. C. (1971) Age- dependent changes in the structure of alpha-crystallin. Invest. Ophthal. Vis. Sci. 10, 677-686.
26. Zhucheng, Y., Monica, C., David, L. S. and Jean, B. S. (1994) Identification of the major components of the high molecular weight crystallins from old human lenses. Curr. Eye Res. 13, 415-421.
27. John, A. C., Kerrie, A. N. and Nicholls, J. A. (1996) Age-related change in bovineαA-crystallin and high-molecular-weight protein. Exp. Eye Res. 63, 639-647.
28. Roy, D., Spector, A. (1976) High molecular weight protein from human lenses. Exp. Eye Res. 22, 273-279.
29. Smulders, R. H., Merck, K. B., Aendekerk, J., Horwitz, J., Takemoto, L., Slingsby, C.,Bloemendal, H. and de Jong, W. W. (1995) The mutation Asp69→Ser affects the chaperone-like activity of αA- crystallin. Eur. J. Biochem. 232, 834-838.
30. Puttur, S. and Sharma, K. K. (2001) Phe71 is essential for chaperone-like function in αA-crystallin. J. Biol. Chem. 276, 47094-47099.
31. Muchowski, P. J., Wu, G. J., Liang, J. J., Adman, E. T. and Clark, J. I. (1999) Site-directed mutations within the core ‘alpha-crystallin’ domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions. J. Mol. Biol. 289, 397-411.
32. Bova, M. P., Yaron, O., Huang, Q., Ding, L., Haley, D. A., Stewart, P. L. and Horwitz, J. (1999) Mutation R120G in αB-crystallin, which is linked to desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc. Natl. Acad. Sci. USA 96, 6137-6142.
33. Michael L., Patricia K., Dante M. L., William M., Everett W. L. and Richard G. W. (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum. Mol. Genet. 7, 471-474.
34. Shroff, N. P., Cherian-Shaw, M., Bera, S., and Abraham, E. C. (2000) Mutation of R116C result in highly oligomerized αA-crystallin with modified structure and defective chaperone-like function. Biochemistry 39, 1420-1426.
35. Kumar, L. V., Ramakrishna, T., and Rao, C. M. (1999) Structural and functional consequences of the mution of a conserved arginine residue in αA and αB-crystallin. J. Biol. Chem. 274, 24137-24141.
36. Bera, S., Thampi P., Cho, W. J. and Abraham, E. C. (2002) A positive charge preservation at position 116 of αA-crystallin is critical for its structural and functional integrity. Biochemistry 41, 12421- 12426.
37. Raman, B. and Rao, C. M. (1997) Chaperone-like activity and temperature-induced structural changes of α-crystallin. J. Biol. Chem. 272, 23559-23564.
38. Maiti, M., Kono, M. and Chakrabarti, B. (1988) Heat-induced changes in the conformation of α- and β-crystallins: unique thermal stability of α-crystallin. FEBS Lett. 236, 109-114.
39. Das, B. K., Liang, J. J. N. and Chakrabarti, B. (1996) Heat-induced conformational change and increased chaperone activity of lens α-crystallin. Curr. Eye Res. 16, 303-309.
40. Das, K. P. and Surwicz, W. K. (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of α-crystallin. FEBS Lett. 369, 321-325.
41. Raman, B. and Rao, C, M. (1994) Chaperone-like activity and quaternary structure of α-crystallin. J. Biol. Chem. 269, 27264-27268.
42. Raman, B., Ramakrishna, T. and Rao, C. M. (1995) Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett. 369, 133-136.