研究生: |
蔡岱成 Tsai, Dai-Chen |
---|---|
論文名稱: |
結合鹵胺/聚乙二醇塗層之殺菌與抗細菌貼附功能棉纖維 Integrated bactericidal and antimicrobial adhesion of cotton fabric modified with halamine /PEG coating |
指導教授: |
林睿哲
Lin, Jui-Che |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 殺菌 、抗貼附 、表面改質 、鹵胺 、矽烷 、聚乙二醇 |
外文關鍵詞: | bactericidal, antimicrobial adhesion, surface modification, halamine, silane, PEG |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹵胺類抗菌劑不只具備以往抗菌劑優點,廣譜的抗菌能力,還有低毒性、高穩定性及最重要的再生特性,能大幅降低一次性抗菌醫材使用的浪費,使其成為新一代的抗菌材料。此外,材料表面的不特定的生物分子貼附,推動了抗貼附材料的研發。而兩種方向都是材料在生物分子的影響下,所發展出的應用策略,故許多學者嘗試以結合兩者特性進行探討。
在本文中,設計在棉纖維上結合殺菌-鹵胺與抗細菌貼附-聚乙二醇兩項特性。首先會合成3-triethoxysilylpropyl-5,5-dimethylhydantoin (NSi),為一矽烷系鹵胺類,對產物的結構進行鑑定。Poly(ethylene glycol) diglycidyl ether (PEGDE)的改質層則透過XPS,確認鹵胺抗菌處理下的穩定性。兩部分得到解釋後,我們採用浸軋法,以化學鍵結方式,將其結合到棉纖維上。後續利用FTIR檢測織物處理效果,並探討親疏水性的影響。而應用方面,針對細菌貼附與抗菌測試兩方向進行檢測,也討論到水洗穩定性的問題。
各實驗結果中,在基於NSi導入PEGDE的纖維,展現出較佳的親水性、數量少的細菌貼附,可歸納出親疏水性與細菌貼附量相關性。抗菌應用方面,即使是經過多次水洗,殺菌效能依然展現良好效果。綜上所述,我們以簡單的浸軋法製備樣品,先檢測織物改質層結構特性,後續透過抗菌效能及細菌貼附測試,闡述應用效能,也得到不錯效果,使得棉纖維得到了更有潛力的發展。
N-halamine antibacterial materials attracted a wide attention to researchers due to their wide antibacterial spectrum, non-toxicity, long-term stability, and most important of all, rechargeability, which can significantly reduce waste of disposable biomaterials. Meanwhile, the performance of materials has been demonstrated to be compromised by the non-specific bacterial attachment. This issue has led to the development of anti-adhesion materials. Henceforth, researchers have proposed to develop materials with characteristics integrating bactericidal and antimicrobial adhesion for antibacterial applications. In this article, we presented a facile approach to produce antimicrobial fabric, which integrates N-halamine and poly ethylene glycol coating. First, an organosilicon N-halamine, 3-triethoxysilylpropyl-5,5-dimethylhydantoin(NSi), was prepared and the structures of product were characterized. In the meantime, a modified layer made by poly ethylene glycol diglycidyl ether (PEGDE) was prepared and its stability after chlorination was evaluated. Based upon the results obtained above, the finishing agents prepared by NSi and PEGDE solution were applied to cotton fibers by pad-dry process. The textiles obtained were characterized using a variety of testing methods. It was noted that the fabric modified via PEGDE and NSi showed higher hydrophilicity, less bacterial adhesion. Antimicrobial tests exhibited that the treated cotton possessed sufficient antibacterial properties against Staphylococcus aureus and Escherichia coli. It stays valid even though times washing. In conclusion, this work successfully fabricated a rechargeable and washable cotton surface with bactericidal/antibacterial adhesion characteristics by simply pad-dry process.
[1] Q.L. Feng, A mechanistic study of the antibacterial effect of silverions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research (2000).
[2] C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, Journal of Nanoparticle Research 12(5) (2010) 1531-1551.
[3] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol Adv 27(1) (2009) 76-83.
[4] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology 16(10) (2005) 2346-53.
[5] M. Ip, S.L. Lui, V.K. Poon, I. Lung, A. Burd, Antimicrobial activities of silver dressings: an in vitro comparison, J Med Microbiol 55(Pt 1) (2006) 59-63.
[6] M.E. Innes, The use of silver coated dressings on donor site wounds, Burns 27(6) (2001) 621–627.
[7] L. Braydich-Stolle, S. Hussain, J.J. Schlager, M.C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells, Toxicol Sci 88(2) (2005) 412-9.
[8] M.R. Gorensek, P., Nanosilver functionalized cotton fabric, Textile Research Journal 77(3) (2007) 138-141.
[9] B. Simoncic, B. Tomsic, Structures of novel antimicrobial agents for textiles - a review, Textile Research Journal 80(16) (2010) 1721-1737.
[10] T. Ikeda, H. Yamaguchi, S. Tazuke, New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups, Antimicrobial Agents and Chemotherapy 26(2) (1984) 139-144.
[11] Y.H. Kim, G. Sun, Durable antimicrobial finishing of nylon fabrics with acid dyes and a quaternary ammonium salt, Textile Research Journal 71(4) (2001) 318-323.
[12] 鄒海清, 抗菌衛生整理劑,其製備方法,應用及工藝, CN1048846A (1991).
[13] L. Caillier, E.T. de Givenchy, R. Levy, Y. Vandenberghe, S. Geribaldi, F. Guittard, Synthesis and antimicrobial properties of polymerizable quaternary ammoniums, Eur J Med Chem 44(8) (2009) 3201-8.
[14] G. Soares, Optimization of application procedure for fixation of monocationic salt onto cotton with antibacterial activity, Fibers and Polymers 9(4) (2008) 450-454.
[15] E.I. Rabea, Chitosan as antimicrobial agent applications and mode of action, Biomacromolecules 4(6) (2003) 1457-1465.
[16] D. Alonso, M. Gimeno, R. Olayo, H. Vázquez-Torres, J.D. Sepúlveda-Sánchez, K. Shirai, Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles, Carbohydrate Polymers 77(3) (2009) 536-543.
[17] H.B. Kocer, Synthesis, structure-bioactivity relationship, and application of antimicrobial materials, Auburn, Alabama (2009).
[18] D.E. Williams, Is free halogen necessary for disinfection?, Applied And Enironmental Microbiology 54(10) (1988) 2583-2585.
[19] J. Liang, Fabric treated with antimicrobial N-halamine epoxides, Industrial & Engineering Chemistry (2007).
[20] R. Li, M. Sun, Z. Jiang, X. Ren, T.S. Huang, N-halamine-bonded cotton fabric with antimicrobial and easy-care properties, Fibers and Polymers 15(2) (2014) 234-240.
[21] S.D. Worley, Novel N-halamine siloxane monomers and polymers for preparing biocidal coatings, Surface Coatings International 88 (2005) 83-156.
[22] I. Cerkez, H.B. Kocer, S.D. Worley, R.M. Broughton, T.S. Huang, N-halamine biocidal coatings via a layer-by-layer assembly technique, Langmuir 27(7) (2011) 4091-7.
[23] X. Fan, X. Ren, T.-S. Huang, Y. Sun, Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer, RSC Adv. 6(48) (2016) 42600-42610.
[24] X. Li, Y. Liu, Z. Jiang, R. Li, X. Ren, T.S. Huang, Synthesis of an N-halamine monomer and its application in antimicrobial cellulose via an electron beam irradiation process, Cellulose 22(6) (2015) 3609-3617.
[25] G. Luo, G. Xi, X. Wang, D. Qin, Y. Zhang, F. Fu, X. Liu, Antibacterial N-halamine coating on cotton fabric fabricated using mist polymerization, Journal of Applied Polymer Science 134(22) (2017).
[26] J.F. Williams, Antimicrobial properties of novel n-halamine siloxane coatings, Surface Coatings International 88 (2005) 1-82.
[27] L. Kou, Synthesis of a water-soluble siloxane copolymer and its application for antimicrobial coatings, Advanced Materials 48 (2009) 6521–6526.
[28] Y. Liu, K. Ma, R. Li, X. Ren, T.S. Huang, Antibacterial cotton treated with N-halamine and quaternary ammonium salt, Cellulose 20(6) (2013) 3123-3130.
[29] X. Cheng, R. Li, J. Du, J. Sheng, K. Ma, X. Ren, T.-S. Huang, Antimicrobial activity of hydrophobic cotton coated with N-halamine, Polymers for Advanced Technologies 26(1) (2015) 99-103.
[30] P.H. Mutin, G. Guerrero, A. Vioux, Hybrid materials from organophosphorus coupling molecules, Journal of Materials Chemistry 15(35-36) (2005) 3761.
[31] S.E. Phillips P, Yang Q, Antonelli P, Progulske-Fox A, Schultz G., Bacterial biofilms in wounds. , Wound Healing Southern Africa 1(2) (2008) 10-12.
[32] C.A. Fux, J.W. Costerton, P.S. Stewart, P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol 13(1) (2005) 34-40.
[33] D. Davies, Understanding biofilm resistance to antibacterial agents, Nat Rev Drug Discov 2(2) (2003) 114-22.
[34] A.R. Horswill, P. Stoodley, P.S. Stewart, M.R. Parsek, The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities, Anal Bioanal Chem 387(2) (2007) 371-80.
[35] H.C. Flemming, T.R. Neu, D.J. Wozniak, The EPS matrix: the "house of biofilm cells", J Bacteriol 189(22) (2007) 7945-7.
[36] M. Charnley, M. Textor, C. Acikgoz, Designed polymer structures with antifouling–antimicrobial properties, Reactive and Functional Polymers 71(3) (2011) 329-334.
[37] I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv Mater 23(6) (2011) 690-718.
[38] C.H. Ho, Nanoseparated polymeric networkswith multiple antimicrobial properties, Advanced Materials (2003).
[39] M.D. Phaneuf, Development of an infection-resistant, bioactive wound dressing surface, Wiley InterScience (2005).
[40] X. Wang, S. Yuan, D. Shi, Y. Yang, T. Jiang, S. Yan, H. Shi, S. Luan, J. Yin, Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating, Applied Surface Science 375 (2016) 9-18.
[41] C. Yang, Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating, Advanced Materials 26(43) (2014) 7346–7351.
[42] F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles, Polymers 4(4) (2012) 46-71.
[43] H. Shi, H. Liu, S. Luan, D. Shi, S. Yan, C. Liu, R.K.Y. Li, J. Yin, Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal components, Composites Science and Technology 127 (2016) 28-35.
[44] X. Ren, H.B. Kocer, L. Kou, S.D. Worley, R.M. Broughton, Y.M. Tzou, T.S. Huang, Antimicrobial polyester, Journal of Applied Polymer Science 109(5) (2008) 2756-2761.
[45] A. Berger, Hydantoinysilanes, US4412078 (1983).
[46] L. Kou, J. Liang, X. Ren, H.B. Kocer, S.D. Worley, R.M. Broughton, T.S. Huang, Novel N-halamine silanes, Colloids and Surfaces A: Physicochemical and Engineering Aspects 345(1-3) (2009) 88-94.
[47] J. Liang, R. Wu, J.W. Wang, K. Barnes, S.D. Worley, U. Cho, J. Lee, R.M. Broughton, T.S. Huang, N-halamine biocidal coatings, J Ind Microbiol Biotechnol 34(2) (2007) 157-63.
[48] S. Schmidt-Emrich, P. Stiefel, P. Rupper, H. Katzenmeier, C. Amberg, K. Maniura-Weber, Q. Ren, Rapid assay to assess bacterial adhesion on textiles, Materials 9(4) (2016) 249.
[49] P.M. Sivakumar, S. Balaji, V. Prabhawathi, R. Neelakandan, P.T. Manoharan, M. Doble, Effective antibacterial adhesive coating on cotton fabric using ZnO nanorods and chalcone, Carbohydrate Polymers 79(3) (2010) 717-723.