簡易檢索 / 詳目顯示

研究生: 曹松華
Tsao, Sung-Hwa
論文名稱: 隨機遞減法於非定常環境振動模態參數識別之應用
Modal Parameter Identification Using Non-stationary Vibration Data By Random Decrement Technique
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 105
中文關鍵詞: 隨機遞減法非定常環境振動隨機振動亞伯拉罕時域法
外文關鍵詞: ITD, random vibration, non-stationary vibration, RDD
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   結構系統之模態參數,可藉由激勵訊號與響應訊號進行識別。而在真實的世界中,結構系統受環境振動影響下,卻僅能獲得其響應訊號。因此如何規避激勵信號的量測而直接由響應資料識別模態參數,為本文探討之重點。本文考慮當線性結構系統在環境振動下,假設激勵信號為非定常過程,其響應訊號經隨機遞減法處理後,隨機遞減訊號與脈衝響應或自由振動衰減響應有相同之數學形式,進而利用亞伯拉罕時域模態參數識別法計算出結構系統之自然頻率、阻尼比與模態振形。另外,結構系統受有色訊號激勵下,可利用模態正交性區別其結構模態與假想激勵訊號模態。最後經由數值模擬,驗證本文所探討的方法能有效地識別出結構的主要模態參數及振動反應。

      Identification of system characteristics is usually accomplished using both input and output data from the structural system. In many cases, however, only output measurements are possible for structures under ambient conditions. It is shown that if the input signals can be modeled as non-stationary white noise the theoretical auto- and cross-random decrement vibration signature of the response of a linear structure are in the same mathematical form as free vibration of the structure. The objective of this thesis is to develop a modal parameter identification method by using time domain identification techniques with the response randomdec signatures treated as free vibration data. In this fashion, the problem of unknown inputs has been circumvented. The structure’s responses fixed time solely are then used to identify the structure system. In this thesis, the Ibrahim Time Domain method is employed as the modal identification schemes to extract modal parameters from vibration data. Through numerical simulation, the applicability of the modal parameter identification method proposed is confirmed.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅶ 第一章 緒論……………………………………………………………1 1-1 引言……………………………………………………………1 1-2 文獻回顧………………………………………………………3 1-3 研究目的及方法………………………………………………5 1-4 本文內容………………………………………………………6 第二章 線性系統的隨機反應…………………………………………7 2-1 隨機過程簡介…………………………………………………7 2-2 確定性動力分析………………………………………………15 2-3 定常外力過程分析……………………………………………17 2-4 非定常外力過程的分析………………………………………20 第三章 一般環境振動下之模態參數識別……………………………22 3-1 引言……………………………………………………………22 3-2 受定常白訊激勵信號隨機遞減法之理論……………………23 3-3 受非定常白訊激勵信號隨機遞減法之理論…………………28 3-4 受非定常有色激勵信號濾波理論推導………………………30 3-5 實模態與複模態………………………………………………33 第四章 時域法模態參數識別理論……………………………………36 4-1 引言……………………………………………………………36 4-2 Ibrahim 時域法………………………………………………37 4-3 Ibrahim 時域法之探討………………………………………44 4-3 模態可信度(Modal Assurance Criterion, MAC)…………46 第五章 數值模擬結果與討論…………………………………………48 5-1 引言……………………………………………………………48 5-2 隨機外力過程的模擬…………………………………………48 5-3 鏈模型之模態參數識別………………………………………50 5-4 具有相近模態之參數識別……………………………………55 5-5 受非定常有色激勵訊號之系統模態參數識別………………57 第六章 結論……………………………………………………………59 參考文獻 ………………………………………………………………61 附錄 ……………………………………………………………………98

    [1]Ang, A. H-S. and Tang, W.H., “Probability Concepts in Engineering Planning and Design”, Vol. 1, John Wiley, 1975, Chap. 4.
    [2]Asmussen, J.C., Ibrahim, S. R. and R.Brincker, “Random Decrement and Regression Analysis of Bridges Traffic Responses”, Proceedings of the 14th International Model Analysis Conference, Vol. 1, 1996, pp. 453-458.
    [3]Bathe, K. J., “Finite Element Procedures in Engineering Analysis”, Prentic-Hall, 1982, Chap. 9.
    [4]Beck, J. L. and Jennings, P. C., “Structural Identification Using Linear Models and Earthquake Records”, Earthquake Engineering and Structural Dynamics, Vol. 8, 1980, pp. 145-160.
    [5]Beck, J. L., “Determining Models of Structures from Earthquake Records”, Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    [6]Bedewi, N.E., “The Mathematical Foundation of the Auto and Cross-random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration”, Ph. D Thesis, University of Maryland College Park, 1986.
    [7]Bendat, J.S. and Piersol, A.G., “Random Data: Analysis and Measurement Procedures”, John Wiley, New York, 1971.
    [8]Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H. “Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation”, The International Joural of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, October 1988, pp. 117-122.
    [9]Code, H. A. Jr., “Methods and apparatus for measuring the damping characteristics of a structures by the random decrement technique”, United States Patent No. 3, 620, 069, 1971.
    [10]Davis, W.R. and Bucciarelli, L.L, “Nonstationary Spectral Analysis for Linear Dynamic System”, AIAA Journal, Vol. 13, No. 1, 1975, pp. 543-545.
    [11]Deblauwe, R., Brown, D. L., and Allemang, R. J., “The Polyreference Time Domain Technique”, Proceedings 5th Int. Modal Analysis Conference, Orlando, Fla., 1987, pp. 832-845.
    [12]Ewins, D. J., “Modal Testing: Theory and Practice”, Research Studies Press, 1984.
    [13]Ibrahim, S. R. ,Brincker, R. and Asmussen, J. C., “Modal Parameter Identification from Responses of General Unknown Random Inputs”, Proceedings of the 14th International Model Analysis Conference, Vol. 1, 1996, pp. 446-452.
    [14]Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, Sept. 1977, pp. 183-198.
    [15]Ibrahim, S. R. and Mikulcik, E. C., “The experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp. 183-198.
    [16]Ibrahim, S. R. and Pappa, R. S., “ Large Survey Testing Using the Ibrahim Time Domain (ITD) Model Identification Algorithm, ” Journal of Spacecraft and Rockets, Vol. 19, Sept.-Oct. 1982, pp. 459-465.
    [17]Ibrahim, S. R., “Random Decrement Technique for Modal Identification of Structures”, Journal of Spacecraft and Rockets, Vol. 140, Nov. 1977, pp. 696-700.
    [18]Ibrahim, S. R., and Fullekrug, U., 1990, “Investigation into Exact Normalization of Incomplete Complex Modes by Decomposition Trasformation”, Proceedings of 8th International Modal Analysis Conference, Kissimmee, FL, pp. 205-212.
    [19]Ibrahim, S. R., Asmussen, J. C. and Brincker, R., “Statistical Theory of the Vector Random Decrement Technique”, Journal of Sound and Vibration, Vol. 226, 1999, pp. 329-344.
    [20]Ibrahim, S. R., Asmussen, J. C. and Brincker, R., “ Vector Triggering Random Decrement Technique for Higher Identification Accuracy”, Proceedings of the 15th International Model Analysis Conference, Vol. 1, 1997, pp. 502-509.
    [21]Ibrahim, S. R.,“ Computation of Normal Modes from Identified Complex Modes”, AIAA, Vol. 21, No. 3, 1983, pp. 446-451.
    [22]James, G. H., Carne. T. G. and Lauffer, J. P.,“ The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines” SAND92-1666. UC-261, Sandia National Laboratories, 1993.
    [23]Juang, J, -N. and Pappa, R .S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Jounal of Guidance and Control Dynamics, AIAA, Vol. 8, No. 5, 1985, pp. 620-627.
    [24]Juang, J, -N. and Pappa, R .S., “Effect of Noise on Modal Prarmeters Identified by the Eigensystem Realization Algorithm”, Jounal of Guidance and Control Dynamics, AIAA, Vol. 9, No. 3, 1986, pp. 294-303.
    [25]Juang, J, -N., Cooper, J. E. and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, 1988, pp. 5-14.
    [26]Kennedy, S. R. and Pancu, C. D. P. “Use of Vectors in Vibration Measurement and Analysis”, Journal of Aeronautics Sciences, Vol. 14, No. 11, 1974, pp. 603-625.
    [27]Kirshenboim, J., “Real vs. Complex Mode Shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, pp. 1594-1599.
    [28]Lin, Y. K., “Probabilitstic Theory of Structural Dynamics”, McGraw-Hill, New York, 1967.
    [29]Newland, D.E., “An Introduction to Random Vibrations and Spectral Analysis”, 1975, Chap. 7.
    [30]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis Via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    [31]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    [32]Pandit, S. M. and Wu, S. M., “Time Series and System Analysis with Applications”, John Wiley & Sons, Inc., New York, 1983.
    [33]Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Pt. 3, 1981, pp. 43-72.
    [34]Shinozuka, M., “Random Process with Evolutionary Power”, J. Eng. Mech. Div., ASCE, Vol. 96, EM4, 1970, pp. 543-545.
    [35]Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1. 1971, pp. 357-367.
    [36]Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. and Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Apr. 1982, Vol. 104.
    [37]Vold, H. and Rocklin, G. F. “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [38]Ward Heylen, Stefan Lammens and Paul Sas, “Modal Analysis Theory and Testing, 2nd ed.”, Katholieke Universiteit Leuven, Faculty of Engineering, Dept. of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, 1998.
    [39]Wei, M. L., Allemang, R. J. and Brown, D. L., “Real-Normalization of Measured Complex Modes”, Proceedings of 5th International Modal Analysis Conference, London, England, 1987, pp. 708-712.
    [40]林文祺、黃群堯、王傑兒, “鋼筋混凝土樑損壞之識別”, 結構工程, Vo1. 13, No. 4, 1998, pp. 19-39.
    [41]林其璋、高雍超、王哲夫, “應用部份量測反應之結構系統識別”, 中國土木水利工程學刊, Vo1. 7, No. 3, 1995, pp. 307-316.
    [42]黃炯憲、葉錦勳、林憲忠、葉公贊, “隨機遞減法在微震量測之應用-比例阻尼系統”, 國家地震工程研究中心研究報告編號:NCREE-96-013, 1996.
    [43]詹啟鋒, “受環境振動之系統參數識別”, 碩士論文, 國立成功大學航空太空工程學研究所, 2000.
    [44]鄭銘勢, “時域模態參數識別法之應用”, 碩士論文, 國立成功大學航空太空工程學研究所, 1997.

    下載圖示 校內:立即公開
    校外:2004-07-27公開
    QR CODE