簡易檢索 / 詳目顯示

研究生: 高玉馨
Kao, Yu-Xin
論文名稱: 具界面修飾層之FAxMA1-xPbI3鈣鈦礦太陽能電池特性研究
Investigated performance of FAxMA1-xPbI3 perovskite solar cells with interface modification layer
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 鈣鈦礦太陽能電池FAxMA1-xPbI3氧化釩界面修飾層接觸角量測異丁醇摻雜表面能
外文關鍵詞: perovskite solar cells, VOx interface modification layer, IBA-doped
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究內容包含三個部分(1)探討具不同含量FA摻雜FAxMA1-xPbI3主動層之鈣鈦礦太陽能電池特性分析、(2)探討具不同厚度氧化釩(VOx)界面修飾層之鈣鈦礦太陽能電池特性分析及(3)探討具微量IBA摻雜PEDOT:PSS電洞傳輸層之鈣鈦礦太陽能電池特性分析。
    第一部分利用較大離子半徑的FA陽離子(CH(NH2)2+)取代較小離子半徑的MA陽離子(CH3NH3+),製作FAxMA1-xPbI3(x=0、0.2、0.3及0.4)鈣鈦礦薄膜,以減緩鈣鈦礦的結晶速率,提升鈣鈦礦的薄膜品質,隨著離子半徑較大的FA取代較小的MA陽離子,會造成鈣鈦礦的晶格擴展,使能帶寬度變窄,而造成吸收頻譜紅移,當FA0.3MA0.7PbI3時具有最佳的結晶特性,使電子電洞對復合減少及載流子擴散長度改善,讓主動層產生更多激子,提升短路電流密度,進而提升元件轉換效率。由實驗結果發現當FA0.3MA0.7PbI3時鈣鈦礦太陽能電池為最佳條件,其開路電壓由0.79 V提升至0.81 V,短路電流密度由19.32 mA/cm2上升到22.83 mA/cm2,填充因子由61.44%提升至62.78%,以及光電轉換效率由9.37%大幅提升至11.61%。
    第二部分利用磁控式射頻濺鍍系統製備氧化釩薄膜,作為ITO電極與PEDOT:PSS電洞傳輸層之間的界面修飾層,本研究探討不同氧化釩界面修飾層厚度(10、20、30及40 nm)對於元件特性之影響, 由於增加VOx界面修飾層後,除了HOMO能階與ITO電極的功函數更為匹配,且有效擔任電子阻擋層,以減少漏電流產生,進而增加開路電壓;另外由於接觸角量測及換算薄膜表面能的結果顯示氧化釩界面修飾層能使PEDOT:PSS薄膜的表面能由46.17mJ/m2提升至47.74 mJ/m2,因此使鈣鈦礦溶液塗佈時有更好的附著度及電性接觸,伴隨改善載子在界面的注入,提升結晶度,進而提升元件特性。由元件的量測結果顯示,當氧化釩界面修飾層厚度為20 nm時,FA0.3MA0.7PbI3鈣鈦礦太陽能電池有最佳特性,其並聯電阻最高,串聯電阻最低,開路電壓由0.81 V上升至0.83 V,短路電流密度由22.83 mA/cm2增加至23.49 mA/cm2,填充因子由62.78%增加至71.43%,以及光電轉換效率由11.61%大幅上升至13.92%。
    第三部分將0.05 mL、0.10 mL及0.15 mL的IBA摻雜於1 mL的PEDOT:PSS溶液中,以製作具5%、10%及15%IBA摻雜之PEDOT:PSS:IBA薄膜作為鈣鈦礦太陽能電池的電洞傳輸層,探討不同IBA摻雜量對PEDOT:PSS:IBA薄膜特性影響及對鈣鈦礦太陽能電池特性之影響。由光電子能譜儀的量測結果顯示,將IBA摻雜於PEDOT:PSS:IBA薄膜中,其HOMO能階從5.20 eV增加到5.40 eV,而當n型材料LUMO與p型材料HOMO差值越大時有助於開路電壓提升,且利用接觸角量測及表面能換算之結果顯示,將IBA摻雜於PEDOT:PSS:IBA薄膜有助於提升其表面能,因此鈣鈦礦溶液塗佈時有更好的附著度且結晶度獲得提升,有助於主動層產生的電洞能有效的被外部電路萃取,使得元件有較佳穩定性及性能。由元件的量測結果顯示,當摻雜10%IBA於PEDOT:PSS:IBA薄膜作為鈣鈦礦太陽能電池的電洞傳輸層時具有最佳化,其開路電壓由0.83 V提升至0.85 V,短路電流密度由23.49 mA/cm2上升到23.90 mA/cm2,填充因子由71.43%提升至72.31%,以及光電轉換效率由13.92%大幅提升至14.68%。

    In the first part,various FA contents were doped into the FAxMA1-xPbI3 (x=0.1, 0.2, 0.3, and 0.4)perovskite active layer. Since the ionic radius of the FA cation was large, the crystal lattice of the perovskite could be enlarged, the bandgap width narrows, the absorption spectrum has a red-shift, the structural defects and stability could be improved.The power conversion efficiency of the perovskite solar cells using FA0.3MA0.7PbI3 as active layer increased from 9.37% to 11.61%. In the second part, this study used vanadium oxide(VOx) thickness 10, 20, 30 and 40 nm as an interface modification layer (IML).The VOx IML could make a more match energy level between the work function of ITO anode electrode and the highest occupied molecular orbital (HOMO) of PEDOT:PSS hole transport layer (HTL), and increase the surface energy of the PEDOT:PSS film. The power conversion efficiency of the perovskite solar cell using VOx thickness 20nm as the IML increased from 11.61% to 13.92%. In the last part, the isobutanol (IBA) with various ratios of 5%, 10%, and 15% was doped into PEDOT:PSS films as the HTL of perovskite solar cells. The PEDOT:PSS:IBA films with IBA-doped could increase the HOMO energy level and surface energy.The power conversion efficiency the perovskite solar cells using 10% IBA-doped PEDOT:PSS HTL increased from 13.92% to 14.68%.

    摘要...I Abstract...IV 致謝...XI 目錄...XIII 表目錄...XVI 圖目錄...XVII 第一章 序論...1 1-1 前言...1 1-2 研究動機...2 1-3 有機太陽能電池簡介...4 1-3-1 染料敏化太陽能電池...5 1-3-2 高分子有機太陽能電池...5 1-3-3 小分子有機太陽能電池...7 1-3-4 鈣鈦礦有機太陽能電池...7 第二章 太陽能電池之基本理論...13 2-1 太陽能電池簡介...13 2-2 有機材料能帶理論...14 2-3有機太陽能電池工作原理...15 2-4 太陽能電池的等效電路...17 2-5 太陽能電池各項參數...19 第三章 實驗製程介紹與量測儀器原理...26 3-1 製程及量測機台介紹...26 3-1-1磁控式射頻濺鍍系統...26 3-1-2熱蒸鍍物理沉積系統...26 3-1-3轉換效率量測系統...27 3-1-4外部量子效率量測系統...28 3-1-5 暗電流量測系統...28 3-1-6分光光譜儀量測系統...29 3-1-7掃描式電子顯微鏡...29 3-1-8低掠角薄膜X光繞射儀...30 3-1-9接觸角量測儀...31 3-2 材料介紹...32 3-3 實驗步驟...34 3-3-1 基板清潔...34 3-3-2 定義陽極之圖形...34 3-3-3 製作電洞傳輸層...36 3-3-4 製作主動層...37 3-3-5 製作電子傳輸層...39 3-3-6 製作電洞阻擋層...39 3-3-7 製作陰極...39 第四章 具界面修飾層之FAxMA1-xPbI3鈣鈦礦太陽能電池特性研究...52 4-1 主動層配置最佳化...52 4-1-1探討具不同含量FA摻雜FAxMA1-xPbI3主動層之鈣鈦礦薄膜特性分析...53 4-1-2 探討具不同含量FA摻雜FAxMA1-xPbI3主動層之鈣鈦礦太陽能電池特性量測...55 4-2 氧化釩界面修飾層最佳化...57 4-2-1具氧化釩界面修飾層之薄膜特性分析...58 4-2-2具氧化釩界面修飾層之鈣鈦礦太陽能電池特性量測...60 4-3微量IBA摻雜PEDOT:PSS之電洞傳輸層最佳化...61 4-3-1 微量IBA摻雜PEDOT:PSS之薄膜特性分析...62 4-3-2 微量IBA摻雜PEDOT:PSS鈣鈦礦太陽能電池特性量測...64 4-4 主動層調變及氧化釩界面修飾層與PEDOT:PSS:IBA電洞傳輸層之元件特性...66 第五章 結論...91 參考文獻...93

    [1] K. W. J. Barnham, M. Mazzer, and B. Clive, “Resolving the energy crisis: Nuclear or photovoltaics?,” Nat. Mater., vol. 5, no. 3, pp. 161-164, 2006.
    [2] K. D. Lee, S. S. Dahiwale, Y. D. Kim, S. Kim, S. Bae, S. Park, S. J. Tark, and D. Kim, “Influence of gas mixture ratio on properties of SiNx:H films for crystalline silicon solar cells,” Energy Procedia, vol. 27, pp. 419-425, Jan. 2012.
    [3] K. Ryu, Y. J. Lee, M. Ju, H. Choi, B. Kim, J. Lee, W. Oh, K. Choi, N. Balaji, and J. Yi, “Optimal indium tin oxide layer as anti reflection coating for crystalline silicon solar cell with shallow emitter,” Thin Solid Films, vol. 521, pp. 50-53, Oct. 2012.
    [4] B. Kim, J. Kim, M. Kim, B. D. Kim, S. Jo, S. Park, J. Son, S. Hwang, S. Dugasani, I. Chang, M. Kim, and W. Liu, “Ternary and senary representations using DNA double-crossover tiles,” Nanotechnology, vol. 10, p. 105601, 2016.
    [5] D. Triantou, S. Soulis, S. Koureli, A. D. Sio, and E. Hauff, “Thiophene-based copolymers synthesized by electropolymerization for application as hole transport layer in organic solar cells,” J. Appl. Polym. Sci., vol. 127, no. 1, pp. 585-592, Jan. 2013.
    [6] H. Y. Lee, H. L. Huang, and C. T. Lee, “Performance enhancement of inverted polymer solar cells using roughened al-doped zno nanorod array,” Appl. Phys. Express, Sol. Energy Mater. Sol. Cells, vol. 5, no. 12, p. 122302, Dec. 2012.
    [7] M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells, vol. 75, no. 1-2, pp. 261-269, Jan. 2003.
    [8] National renewable energy laboratory, “Best research-cell efficiency chart,” 2020.
    [9] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Graẗzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science, vol. 342, no. 6156, pp. 344-347, Oct. 2013.
    [10] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science, vol. 347, no. 6225, pp. 967-970, Feb. 2015.
    [11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050-6051, May 2009.
    [12] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells,” Chem. Mat., vol. 26, no. 3, pp. 1485-1491, Feb. 2014.
    [13] Q. Yi, P. Zhai, Y. Sun, Y. Lou, J. Zhao, B. Sun, B. Patterson, H. Luo, W. Zhang, L. Jiao, H. Wang, and G. Zou, “Aqueous solution-deposited molybdenum oxide films as an anode interfacial layer for organic solar cells,” ACS Appl. Mater. Interfaces, vol. 7, no. 33, pp. 18218-18224, Aug. 2015.
    [14] C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces, vol. 3, no. 9, pp. 3244-3247, Sep. 2011.
    [15] K. Zilberberg, H. Gharbi, A. Behrendt, S. Trost, and T. Riedl, “Low-temperature, solution-processed MoOx for efficient and stable organic solar cells,” ACS Appl. Mater. Interfaces, vol. 4, no. 3, pp. 1164-1168, Mar. 2012.
    [16] Z. Zhai, X. Huang, M. Xu, J. Yuan, J. Peng, and W. Ma, “Greatly reduced processing temperature for a solution-processed NiOx buffer layer in polymer solar cells,” Adv. Energy Mater., vol. 3, no. 12, pp. 1614-1622, Dec. 2013.
    [17] L. You, B. Liu, T. Liu, B. Fan, Y. Cai, L. Guo, and Y. Sun, “Organic solar cells based on WO2.72 nanowire anode buffer layer with enhanced power conversion efficiency and ambient stability,” ACS Appl. Mater. Interfaces, vol. 9, no. 14, pp. 12629-12636, Apr. 2017.
    [18] M. Qiu, D. Zhu, X. Bao, J. Wang, X. Wang, and R. Yang, “WO3 with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells,” J. Mater. Chem. A, vol. 4, no. 3, pp. 894-900, Jan. 2016.
    [19] Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “High-performance polymer solar cells with solution-processed and environmentally friendly CuOx anode buffer layer,” ACS Appl. Mater. Interfaces, vol. 5, no. 21, pp. 10658-10664, Nov. 2013.
    [20] H. T. Lien, D. P. Wong, N. H. Tsao, C. I. Huang, C. Su, K. H. Chen, and L. C. Chen, “Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers,” ACS Appl. Mater. Interfaces, vol. 6, no. 24, pp. 22445-22450, Dec. 2014.
    [21] K. Wang, H. Ren, C. Yi, C. Liu, H. Wang, L. Huang, H. Zhang, A. Karim, and X. Gong, “Solution-processed Fe3O4 magnetic nanoparticle thin film aligned by an external magnetostatic field as a hole extraction layer for polymer solar cells,” ACS Appl. Mater. Interfaces, vol. 5, no. 20, pp. 10325-10330, 2013.
    [22] M. F. Xu, X. B. Shi, Z. M. Jin, F. S. Zu, Y. Liu, L. Zhang, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed GeO2: An anode interfacial layer for high performance and air-stable organic solar cells,” ACS Appl. Mater. Interfaces, vol. 5, no. 21, pp. 10866–10873, Nov. 2013.
    [23] S. P. Cho, J. S. Yeo, D. Y. Kim, S. I. Na, and S. S. Kim, “Brush painted V2O5 hole transport layer for efficient and air-stable polymer solar cells,” Sol. Energy Mater. Sol. Cells, vol. 132, pp. 196-203, Jan. 2015.
    [24] H. Sun, X. Hou, Q. Wei, H. Liu, K. Yang, W. Wang, Q. An, and Y. Rong, “Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells,” Chem. Commun., vol. 52, no. 52, pp. 8099-8102, Jun. 2016.
    [25] X. Yao, J. Qi, W. Xu, X. Jiang, X. Gong, and Y. Cao, “Cesium-doped vanadium oxide as the hole extraction layer for efficient perovskite solar cells,” ACS Omega, vol. 3, no. 1, pp. 1117-1125, Jan. 2018.
    [26] T. H. Yeh, H. Y. Lee, and C. T. Lee, “Performance improvement of perovskite solar cells using vanadium oxide interface modification layer,” J. Alloy. Compd., vol. 822, p. 153620, May 2020.
    [27] S. H. Chang, W. N. Chen, C. C. Chen, S. C. Yeh, H. M. Cheng, Z. L. Tseng, L. C. Chen, K. Y. Chiu, W. T. Wu, C. T. Chen, S. H. Chen, and C. G. Wu, “Manipulating the molecular structure of PEDOT chains through controlling the viscosity of PEDOT:PSS solutions to improve the photovoltaic performance of CH3NH3PbI3 solar cells,” Sol. Energy Mater. Sol. Cells, vol. 161, pp. 7-13, Mar. 2017.
    [28] H. Iftikhar, G. G. Sonai, S. G. Hashmi, A. F. Nogueira, and P. D. Lund, “Progress on electrolytes development in dye-sensitized solar cells,” Materials, vol. 12, no. 12, p. 1998, Jun. 2019.
    [29] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737-740, Oct. 1991.
    [30] 高分子有機太陽能電池技術發展概況,工業材料雜誌262期, 2008.https://www.materialsnet.com.tw/DocView.aspx?id=7271
    [31] K. Matsumura and A. Takahashit, “A schottky barrier type solar cell using polyacetylene,” Jpn. J. Appl. Phys., vol. 20, no. 2, p. L127, 1981.
    [32] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, vol. 258, no. 5087, pp. 1474-1476, 1992.
    [33] G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes,” Appl. Phys. Lett., vol. 64, no. 12, pp. 1540-1542, Mar. 1994.
    [34] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency,” Adv. Mater., vol. 18, no. 6, pp. 789-794, Mar. 2006.
    [35] L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells,” Appl. Phys. Lett., vol. 88, no. 9, p. 093511, Feb. 2006.
    [36] G. Cao and C. J. Brinker, Annual review of nano research, Vol. 3. World Scientific, 2006.
    [37] D. Kearns and M. Calvin, “Photovoltaic effect and photoconductivity in laminated organic systems,” J. Chem. Phys., vol. 29, no. 4, pp. 950-951, Oct. 1958.
    [38] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, no. 2, pp. 183-185, Jan. 1986.
    [39] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, no. 1, pp. 126-128, Jul. 2001.
    [40] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX3 (X = F, Cl, Br, I) halide perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 64, no. 6, pp. 702-707, Nov. 2008.
    [41] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-398, Sep. 2013.
    [42] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency,” Energy Environ. Sci., vol. 9, no. 6, pp. 1989-1997, Jun. 2016.
    [43] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376-1379, Jun. 2017.
    [44] P. Beckmann and A. Spizzichino, The scattering of electromagnetic waves from rough surfaces / Petr Beckmann, Andre Spizzichino, Version details - Trove. Oxford, 1963.
    [45] K. J. Less and E. G. Wilson, “Intrinsic photoconduction and photoemission in polyethylene,” J. Phys. C. Solid State Phys., vol. 6, pp. 3110-3120, 1973.
    [46] 傅聖文,外應力對可撓式有機太陽能電池之影響,國立成功大學電機工程研究所碩士論文,2009。
    [47] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers., Oxford University Press, 1999.
    [48] H. Hertz, “The photovoltaic effect,” Ann. Phys, vol. 31, pp. 421-983,1887.
    [49] S. O. Kasap, Optoelectronics and photonics : principles and practices, Prentice Hall, Upper Saddle River N.J, 2001.
    [50] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res., vol. 19, no. 7, pp. 1924-1945, Jul. 2004.
    [51] P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42-45, Jun. 2013.
    [52] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, no. 6196, pp. 542-546, Aug. 2014.
    [53] Y. J. Cheng, S. H. Yang, and C. S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev., vol. 109, no. 11, pp. 5868-5923, Nov. 2009.
    [54] A. Moliton and J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int., vol. 55, no. 6, pp. 583-600, Jun. 2006.
    [55] B. Qi and J. Wang, “Open-circuit voltage in organic solar cells,” J. Mater. Chem., vol. 22, no. 46, pp. 24315-24325, Dec. 2012.
    [56] H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, “Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces,” Appl. Phys. Lett., vol. 84, no. 23, pp. 4644-4646, Jun. 2004.
    [57] R. F. Bunshah and A. C. Raghuram, “Activated reactive evaporation process for high rate deposition of compounds,” J. Vac. Sci. Technol., vol. 9, no. 6, pp. 1385-1388, Nov. 1972.
    [58] N. V. A. Dao, T. Le, T. Tran, H. C. Nguyen, K. Kim, J. Lee, S. Jung and L. and J. Yi, “Electrical and optical studies of transparent conducting ZnO : Al thin films by magnetron de sputtering,” J. Electroceram., vol. 23, pp. 356-360, 2009.
    [59] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells,” Adv. Funct. Mater., vol. 16, no. 15, pp. 2016-2023, Oct. 2006.
    [60] L. Reimer, “Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Second Edition,” Meas. Sci. Technol., vol. 11, no. 12, pp. 1826-1826, Dec.2000.
    [61] 林麗娟,X光繞射原理及應用,工業材料86期,第101頁,1994年。
    [62] R. A. Y. Azároff, L. V. R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, “X-ray diffraction. McGraw-Hill,” 1974.
    [63] 趙傑,材料科學基礎,大連理工大學出版社,2010。
    [64] D. W. Van Krevelen and K. Te Nijenhuis, “ Properties of Polymers,” Elsevier Inc., 2009.
    [65] E. W. Hughes and W. N. Lipscomb, “The crystal structure of methylammonium chloride,” J. Am. Chem. Soc., vol. 68, no. 10, pp. 1970-975, Oct. 1946.
    [66] W. W. Epstein and F. W. Sweat, “Dimethyl sulfoxide oxidations,” Chem. Rev., vol. 67, no. 3, pp. 247-260, Jun. 1967.
    [67] T. M. Schweizer, “Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin films,” 2005.
    [68] International Program on Chemical Safety., International Labour Organisation., United Nations Environment Programme., and World Health Organization., Isobutanol health and safety guide. World Health Organization, 1987.
    [69] V. V. Yanilkin, V. P. Gubskaya, V. I. Morozov, N. V. Nastapova, V. V. Zverev, E. A. Berdnikov, and I. A. Nuretdinov, “Electrochemistry of fullerenes and their derivatives,” Accounts Chem. Res., vol. 39, no. 11, pp. 1147-1165, 2003.
    [70] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, no. 1, pp. 126-128, Jul. 2001.
    [71] I. G. Hill and A. Kahn, “Organic semiconductor heterointerfaces containing bathocuproine,” J. Appl. Phys., vol. 86, no. 8, pp. 4515-4519, Oct. 1999.
    [72] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Il Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater., vol. 13, no. 9, pp. 897-903, 2014.
    [73] J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” J. Org. Chem., vol. 60, no. 3, pp. 532-538, Feb. 1995.
    [74] Y. H. Wu, Y. Ding, X. Y. Liu, X. Pan, J. H. Wu, andS. Y. Dai, “Sequential Processing: Crystallization of Ultrasmooth FA1- xMAxPbI3 Perovskite Layers for Highly Efficient and Stable Planar Solar Cells,” Sol. RRL, vol. 4, no. 2, p. 1900183, Feb.2020.
    [75] K. C. Chang, T. H. Yeh, H. Y. Lee, and C. T. Lee, “High performance perovskite solar cells using multiple hole transport layer and modulated FAxMA1−xPbI3 active layer,” J. Mater. Sci. Mater. Electron., vol. 31, no. 5, pp. 4135-4141, Mar. 2020.
    [76] H. Zheng, J. Dai, J. Duan, F. Chen, G. Zhu, F. Wang, and C. Xu, “Temperature-dependent photoluminescence properties of mixed-cation methylammonium-formamidium lead iodide [HC(NH2)2]:X[CH3NH3]1-xPbI3 perovskite nanostructures,” J. Mater. Chem. C, vol. 5, no. 46, pp. 12057-12061, 2017.
    [77] F. Ma, J. Li, W. Li, N. Lin, L. Wang, and J. Qiao, “Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission,” Chem. Sci., vol. 8, no. 1, pp. 800-805, Dec.2016.
    [78] A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, no. 10, pp. 978-982, Nov. 1939.
    [79] S. Bai, N. Cheng, Z. Yu, P. Liu, C. Wang, and X. Z. Zhao, “Cubic: Column composite structure (NH2CH=NH2)x(CH3NH3)1-xPbI3 for efficient hole-transport material-free and insulation layer free perovskite solar cells with high stability,” Electrochim. Acta, vol. 190, pp. 775-779, Feb. 2016.
    [80] J. Duan, Z. Liu, Y. Zhang, K. Liu, T. He, F. Wang, J. Dai, and P. Zhou, “Planar perovskite FAxMA1-xPbI3 solar cell by two-step deposition method in air ambient,” Opt. Mater., vol. 85, pp. 55-60, Nov. 2018.
    [81] Y. Zhang, G. Grancini, Y. Feng, A. M. Asiri, and M. K. Nazeeruddin, “Optimization of stable quasi-cubic FAxMA1-xPbI3 perovskite structure for solar cells with efficiency beyond 20%,” ACS Energy Lett., vol. 2, no. 4, pp. 802-806, Apr. 2017.
    [82] A. Maqsood, Y. Li, J. Meng, D. Song, B. Qiao, S. Zhao, and Z. Xu, “Perovskite solar cells based on compact, smooth FA0.1MA0.9PbI3 film with efficiency exceeding 22%,” Nanoscale Res. Lett., vol. 15, pp. 1-9, 2020.
    [83] J. Dai, Y. Fu, L. H. Manger, M. T. Rea, L. Hwang, R. H. Goldsmith, and S. Jin, “Carrier decay properties of mixed cation formamidinium-methylammonium lead iodide perovskite [HC(NH2)2]1-x[CH3NH3]xPbI3 nanorods,” J. Phys. Chem. Lett., vol. 7, no. 24, pp. 5036-5043, Dec. 2016.
    [84] B. Slimi, M. Mollar, I. Ben Assaker, I. Kriaa, R. Chtourou, and B. Marí, “Perovskite FA1-xMAxPbI3 for solar cells: Films formation and properties,” Energy Procedia, vol. 102, pp. 87-95, Dec. 2016.
    [85] H. Kim, K. G. Lim, and T. W.Lee, “Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers,”Energy Environ.Sci., vol. 9, no. 1., pp. 12-30, Jan.01, 2016.
    [86] 游槐呈,降低電洞傳輸層PEDOT:PSS中PSS與熱蒸度是碘化鉛的介面反應以提升鈣鈦礦太陽能電池,國立成功大學光電科學與工程研究所碩士論文,2018。
    [87] K. M. Boopathi, R. Mohan, T. Y. Huang, W.Budiawan, M. Y. Lin, C. H. Lee, K. C. Ho, and C. W. Chu, “Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives,” J. Mater. Chem., vol. 4, no. 5, pp. 1591-1597, Feb.2016.
    [88] L. Hu, T. Liu, L. Sun, S. Xiong, F. Qin, X. Jiang, Y. Jiang, and Y. Zhou, “Suppressing generation of iodine impurity: Via an amidine additive in perovskite solar cells,” Chem. Commun., vol. 54, no. 37, pp. 4704-4707, May2018.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE