| 研究生: |
許惠貞 Hsu, Hui-Chen |
|---|---|
| 論文名稱: |
概凸集上的定點理論 Fixed point theorems on almost convex sets |
| 指導教授: |
黃永裕
Huang, Young-Ye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 16 |
| 中文關鍵詞: | 概凸集合 、定點理論 |
| 外文關鍵詞: | almost convex sets, fixed point theorems |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The subject matter of this thesis is to investigate the fixed points for generalized KKM mappings on almost convex sets. We obtain the following new fixed point theorem :
Let X be an almost convex subset of a locally convex space E. If T $in$ KKM(X,X) is compact and closed, then it has a fixed point.
As applications of this fixed point theorem, we also get
some coincidence theorems on almost convex sets, which generalize many well-known results.
[1] H. Ben-El-Mechaiekh and P. Deguire, Approximation of non-convex set-valued maps, C. R. Acad. Sci. Paris, t.312(1991), 379-384.
[2] H. Ben-El-Mechaiekh and P. Deguire, General fixed point theorems for non-convex set-valued maps, C. R. Acad. Sci. Paris, t.312(1991), 433-438.
[3] H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170(1992), 477-500.
[4] S.S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-223.
[5] T.H. Chang and C.L. Yen, KKM peoperty and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[6] C.M. Chen, Fixed point theorems and KKM theorems and its applications, (Dissertation, 2002).
[7] B. Knaster, C. Kuratowski and S. Mazurkiewice,Ein beweis des xpunktsatzes fur n-dimensional simplexes. Fund. Math. 14(1929), 132-137.
[8] G. J. Minty, On the maximal domain of a montone function, Michigan Math, v.8 (1961), 135-137.
[9] S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141(1989), 164-176.
[10] S. Park, Foundations of the KKM theory via coincidences of composities of upper semicontinuous maps, J. Korean Math. Soc. 31(1994), 493-519.