簡易檢索 / 詳目顯示

研究生: 李俊儀
Li, Jiun-Yi
論文名稱: 利用模糊樹方法建立企業診斷流程
Using Fuzzy Tree Method to Establish a Business Diagnosing Process
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 決策支援系統模糊樹企業診斷
外文關鍵詞: decision support systems, fuzzy tree, business diagnosis
相關次數: 點閱:50下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 企業在成立之後,企業外在的經營環境與企業內部的經營狀況也會隨著時間不停變化;企業為求永續生存,需不斷提升其競爭力,而在遭遇困境,為了找出問題,需為其公司做企業診斷,以尋求突破與改善。
    如果企業平時對於本身體質未特加注意,到了公司財務發生問題之後,才尋求管理顧問公司為其做企業診斷,往往為時已晚。而傳統的企業診斷大多侷限於資產及財務評估、關鍵成功因素探討及企業因應策略等,使用的企業診斷方法有:比率分析法、百分率分析法、趨勢分析法及標準差異分析法…等,以往的方法在找出問題點進行改善之後也無法看出公司之績效有無差異,故本研究一方面從各個部門之績效去評估公司的狀況,另一方面也利用企業診斷之重點項目為企業做診斷,而後利用模糊樹(fuzzy tree)方法,將企業診斷的受評單位轉換成樹的結構,定期的為企業進行診斷,每一階段的企業狀態皆是一個模糊樹,再利用距離測量的方式,得出每一個模糊樹與初始階段模糊樹之比較,以提供管理顧問人員或企業管理者做決策時的參考及依據。

    Due to external factors as well as influences from within a business, maintaining a competitive edge over time requires a great deal of focus on continual improvement. These improvements are best handled through the employment of a management consultant who can impartially evaluate the various elements that impact a given business. Moreover, in cases where a business has not properly taken care of its internal operations it is sometimes too late to hire a management consultant to establish reforms.
    Previous evaluation methods have not addressed the need for proper comparisons between the status of a company both before and after professional evaluations are made by a management consultant. Therefore, in this study, an emphasis is placed not only on taking into account information from each department within a company, but also on those important items essential to the evaluation process. In addition, the fuzzy tree method is employed in order to establish a new evaluation process that can be used during consultations by those in a decision-making capacity. An example is used to demonstrate the approach.

    摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第壹章 緒論 1 第一節 研究動機 1 第二節 研究方法與目的 1 第三節 研究限制 2 第四節 研究流程 2 第五節 論文架構 3 第貳章 文獻探討 5 第一節 企業診斷基本概論 5 一、企業診斷之定義 5 二、企業診斷之需要與目的 6 三、企業診斷之流程 9 第二節 模糊理論 10 一、模糊集合 10 二、模糊數 11 三、語意變數 14 第三節 圖論(graph theory)之相關文獻 15 一、模糊圖論與模糊樹 15 二、樹與樹之比較(tree-to-tree comparison) 17 三、李文斯頓距離(Levenshtein’s distance) 18 四、盧氏演算法(Lu’s algorithm) 19 五、模糊盧氏演算法(Fuzzy Lu’s algorithm) 20 六、小結 21 第參章 建立企業診斷流程 22 第一節 研究構想 22 一、問題描述 22 二、研究假設 23 三、研究架構 23 第二節 建立企業診斷流程 26 一、第一階段:公司績效評估階段 27 二、第二階段:問題改善階段 36 第肆章 模擬資料演算與分析 38 第一節 模擬案例演算 38 案例一:公司績效持續上升 41 案例二:公司績效持平 44 案例三:公司績效持續下降(績效評估階段) 46 案例三:公司績效持續下降(問題改善階段) 48 第伍章 結論與建議 53 第一節 研究成果 53 第二節 未來研究方向 54 參考文獻 55 附錄 58 附錄一 58 附錄二 62

    中文文獻
    並木高矣:企業診斷要領-企業診斷的理論和操作方法,書泉出版社編譯,1988。
    馬君梅:實用企業診斷學,再版,超越企管顧問股份有限公司,1994。
    胡伯潛:企業經營與診斷,滄海書局,2004。
    沙永傑,王忠宗,周賢榮,廖文志:企業診斷,國立空中大學,1996。
    李廣仁:企業診斷學,幼獅文化事業公司,1982。

    英文文獻
    Batagelj, V., “Similarity measures between structured objects,” Studies in Physical and Theoretical Chemistry, 63, 25-40, 1989.

    De Baets, B., Janssens, S., De Meyer, H., “Meta-theorems on inequalities for scalar fuzzy set cardinalities,” Fuzzy Sets and Systems, 157, 1463-1476, 2006.

    Boorman, S.A., Oliver, D.C., “Metrics on spaces of finite trees,” Journal of Mathematical Psychology, 10, 1973.

    Campfield, W.L., “Critical paths for professional accountants during the new management revolution,” The Accounting Review, 521-527, 1963.

    Carlsson, C., “Fuzzy sets and imprecise but relevant decisions,” Twelfth European Meeting on Cybernetics and Systems Research, 1994.

    Deng, Y., Shi, W. K., Du, F. and Liu, Q., “A new similarity measure of generalized fuzzy numbers and its application to pattern recognition,” Pattern Recognition Letters, 25, 875-883, 2004

    Dubois, D. and Prade, H., “Operations on fuzzy numbers,” International Journal of Systems Science, 9, 613-626, 1978.
    Fu, K.S., “Syntactic methods in pattern recognition,” Academic Press, 1974

    Halpern, J., “Set adjacency measures in fuzzy graphs,” Journal of Cybernetics, 5, 77-87, 1975

    Lu, S.-Y., “A tree-to-tree distance and its application o cluster analysis,” IEEE PAMI, 1, 219-224, 1979.

    Moore, R.K., “A dynamic programming algorithm for the distance between two finite areas,” IEEE PAMI, 1, 86-88, 1979.

    Rabiner, L.R., “Consideration in dynamic time warping algorithm for discrete word recognition,” IEEE ASSP, 26, 575-583, 1978.

    Rosenfeld, A., “Fuzzy graphs,” Fuzzy Sets and their Application to Cognitive and Decision Processes, 77-95, 1975.

    Savšek, T., “Fuzzy tree distance as an effective tool in classification,” Proceedings of European Workshop on Fuzzy Decision Analysis for Management, Planning and Optimization, 146-151 1996.

    Savšek, T., Vezjak, M, “Fuzzy tree structures as an efficient tool in decision-making system,” Proceedings of European Simulation Multiconference, 603-607, 1996.

    Savšek, T., Vezjak, M., Pavešić, N., “Fuzzy trees in decision support systems,” European Journal of Operational Research, 174, 293-310, 2006.

    Selkow, S.M., “The tree-to-tree editing problem,” Information Processing Letters, 6, 184-186, 1977.

    Wagner, R.A, Fisher, M.J., “The string-to-string correction problem,” Journal of the Association of Computer Machinery, 21, 168-173, 1974.

    Wang, R.C. and Chuu, S.J., “Group decision-making using fuzzy linguistic approach for evaluating the flexibility in a manufacturing system,” European Journal of Operational Research, 154, 563-572, 2004.

    Yeh, R.T., Bang, S.Y., “Fuzzy relations, fuzzy graphs, and their applications to cluster analysis,” Fuzzy Sets and their Application to Cognitive and Decision Processes, 125-149, 1975.

    Zadeh, L.A., ”Fuzzy sets,” Information Control, 8, 338-353, 1965.

    Zadeh, L.A., “The concept of linguistic variable and its application to approximate reasoning, Part 1,” Information Science, 8, 199-249, 1975.

    下載圖示 校內:2008-06-12公開
    校外:2008-06-12公開
    QR CODE