簡易檢索 / 詳目顯示

研究生: 黃定禹
Huang, Ting-Yu
論文名稱: 於下一代被動光接取網路中之基於最大延遲時間限制的節能動態頻寬分配演算法
Maximum-Delay-Constrained Energy Efficient Dynamic Bandwidth Allocation in Next-Generation PONs
指導教授: 蘇銓清
Sue, Chuan-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: 被動光接取網路睡眠模式延遲時間限制動態頻寬分配節能
外文關鍵詞: Passive Optical Networks (PONs), sleep mode, delay constraint, Dynamic Bandwidth Allocation (DBA), energy efficient
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下一代被動光接取網路的能源節約是目前接取網路的重要議題。睡眠模式被認為在被動光接取網路環境是一個可行且有效的節能方案,許多文獻遂提出許多睡眠模式排程機制,透過睡眠模式排程機制適當地分配頻寬與睡眠模式區間。然而這些文獻僅考慮平均延遲時間限制,若直接以平均延遲時間限制作為最大延遲時間限制,會造成超過最大延遲時間限制的封包比例過大,如此對延遲敏感的封包而言會有很大的影響。
    本論文提出的方法根據封包的最大延遲時間限制計算並設定睡眠時間,大幅降低超過最大延遲時間限制的封包所佔的比例。此外,本論文提出的方法採用Grant-Before-Report (GBR)方式分配頻寬,GBR方式代表OLT無需事先接收報告,即可授予ONU傳輸封包的頻寬,在相同延遲限制設定下GBR可以比傳統的Grant-After-Report (GAR)方法有較長的周期時間。較長的周期時間意味著模式切換的頻率減少且睡眠時間也可以較長,因此可以達到較低的能源消耗。模擬結果顯示本論文提出的方法比起其它方法,不僅可維持良好的節能效率,而且可以確保各類別封包延遲皆小於其各自的最大延遲時間限制,即使在網路負載為0.9時仍僅不到0.76%(遠低於其它方法的11.35%至51.79%)的封包延遲無法滿足最大延遲時間限制。

    Energy saving in the next-generation passive optical networks (NG-PONs) is an essential issue. The sleep mode is considered as a feasible and efficient solution for energy saving in NG-PONs. Therefore, many researchers have proposed some sleep mode scheduling schemes to schedule data transmission and sleep period appropriately. However, these schemes only considered the average delay constraint for the delay-sensitive frames. It is possible that the average frame delay is satisfied, but the maximum frame delay is exceptionally large and deviated from the average delay greatly. This will result in an adverse effect on the delay sensitive frames.
    The proposed energy efficient dynamic bandwidth allocation (EEDBA) scheme is based on the maximum-delay-constraint of the delay-sensitive frames to derive the appropriate sleep period and it can significantly reduce the percentage of unqualified frames. Moreover, the EEDBA method follows Grant-Before-Report (GBR) fashion rather than the conventional Grant-After-Report (GAR). GBR (GAR) fashion means the transmission time slots for an incoming frame will be granted without (with) reporting in advance. Given the same maximum-delay constraint, GBR-based methods can result in the longer cycle time than GAR-based ones. Thus, the transition frequency between active mode and sleep mode is reduced and the length of sleep length can be longer accordingly. Hence the energy consumption of the proposed scheme is lower than the previous schemes. The simulation result shows that compared to other schemes, the proposed EEDBA scheme in NG-PONs can achieve low power consumption while obeying the maximum-delay constraint of the delay-sensitive frames. Even when the traffic load rises up to 0.9, the percentage of unqualified frames is still less than 0.76% which is significantly lower than 11.35%-51.73% in other schemes.

    Contents VIII List of Figures IX List of Tables XI 1. Introduction 1 2. Related Work 4 2.1. Sleep Mode 4 2.2. Energy Efficient Dynamic Bandwidth Allocation 7 2.3. Motivation 13 3. Maximum-Delay-Constrained Energy Efficient Dynamic Bandwidth Allocation 15 3.1. Initialization Stage 17 3.2. Scheduling Stage 19 3.3. Performance Analysis 25 4. Performance Evaluation 33 4.1. Simulation Model 33 4.2. Simulation Results 35 5. Conclusion and Future Work 42 Reference: 44

    [1] Ethernet in the First Mile Task Force, IEEE 802.3ah, Sept. 2004.
    [2] Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification, ITU-T Rec. G.984.3., Mar. 2003.
    [3] N. Ghazisaidi, M. Maier, C. Assi, "Fiber-wireless (FiWi) access networks: a survey," IEEE Communications Magazine, vol.47, no.2, pp.160-167, Feb. 2009.
    [4] N. Ghazisaidi, M. Maier, "Fiber-wireless (FiWi) access networks: challenges and opportunities," IEEE Network, vol.25, no.1, pp.36-42, Feb. 2011.
    [5] E. Wong, “Next-generation broadband access networks and technologies,” Journal of Lightwave Technology, vol.30, no.4, pp.597-608, Feb. 2012.
    [6] R. Kubo, J.-i. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE/OSA Journal of Optical Communications and Networking, vol.2, no.9, pp.716-729, Sept. 2010.
    [7] M.P. McGarry, M. Reisslein, C.J. Colbourn, M. Maier, F. Aurzada, M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” Journal of Lightwave Technology, vol.26, no.10, pp.1204-1216, May 2008.
    [8] H. Song, B.-W. Kim, B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE Journal on Selected Areas in Communications, vol.27, no.2, pp.134-142, Feb. 2009.
    [9] A. Helmy, H. Fathallah, H. Mouftah, “Interleaved polling versus multi-thread polling for bandwidth allocation in long-reach PONs,” IEEE/OSA Journal of Optical Communications and Networking, vol.4, no.3, pp.210-218, Mar. 2012.
    [10] One-Way Transmission Time, ITU-T Rec. G.114., Jun. 2005.
    [11] R. Kooij, K. Ahmed, and K. Brunnström, “Perceived quality of channel zapping,” in Proceedings of the Fifth IASTED International Conference Communications Systems and Networks, pp.155-158, Aug. 2006.
    [12] Z. Begic, M. Bolic, H. Bajric, “Effect of multicast on IPTV channel change performance,” in Proceedings of 50th International Symposium ELMAR, vol.1, pp.151-155, Sept. 2008.
    [13] Media Access Control (MAC) Bridges, IEEE Standard 802.1D, Jun. 1998.
    [14] A.R. Dhaini, C.M. Assi, M. Maier, A. Shami, “Per-stream QoS and admission control in ethernet passive optical networks (EPONs),” Journal of Lightwave Technology, vol.25, no.7, pp.1659-1669, Jul. 2007.
    [15] W.-S. Tang, C.-Y. Huang, C.-J. Chang, F.-C. Ren, “QoS-promoted dynamic bandwidth allocation for ethernet passive optical networks,” in Proceedings of Third International Conference on Communications and Networking in China (CHINACOM), pp.252-256, Aug. 2008.
    [16] S.-W. Wong, L. Valcarenghi, S.-H. Yen, D.R. Campelo, S. Yamashita, L. Kazovsky, “Sleep mode for energy saving PONs: advantages and drawbacks,” in Proceedings of 2009 IEEE Global Communications Conference (GLOBECOM), pp.1-6, Nov. 2009.
    [17] J. Mandin, “EPON powersaving via sleep mode,” IEEE 802.3az Meeting, Sept. 2008; http://www.ieee802.org/3/av/public/2008_09/3av_0809_mandin_4.pdf.
    [18] L. Shi, B. Mukherjee, S.-S. Lee, “Energy-efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Network, vol.26, no.2, pp.36-41, Apr. 2012.
    [19] L. Shi, S.-S. Lee, B. Mukherjee, “An SLA-based energy-efficient scheduling scheme for EPON with sleep-mode ONU,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), pp.1-3, Mar. 2011.
    [20] J. Zhang, N. Ansari, “Toward energy-efficient 1G-EPON and 10G-EPON with sleep-aware MAC control and scheduling,” IEEE Communications Magazine, vol.49, no.2, pp.s33-s38, Feb. 2011.
    [21] Y. Yan, S.-W. Wong, L. Valcarenghi, et al., “Energy management mechanism for ethernet passive optical networks (EPONs),” in Proceedings of 2010 IEEE International Conference on Communications (ICC), pp.1-5, May 2010.
    [22] Y. Yan, L. Dittmann, “Energy efficiency in ethernet passive optical networks (EPONs): protocol design and performance evaluation,” Journal of Communications, vol.6, no.3, pp.249-261, May 2011.
    [23] A. R. Dhaini, P.-H. Ho, G. Shen “Toward green next-generation passive optical networks,” IEEE Communications Magazine, vol.49. no.11, pp.94-101, Nov. 2011.
    [24] A. R. Dhaini, P.-H. Ho, G. Shen, “Energy efficiency in Ethernet passive optical networks: for how long can ONU sleep?” Univ. of Waterloo tech. rep., Mar. 2011; https://ece.uwaterloo.ca/~adhaini/Files/G_EPON_Sleep.pdf.
    [25] G. Kramer, Ethernet Passive Optical Networks, McGraw-Hill, Mar. 2005.
    [26] A. Shami, X. Bai, C.M. Assi, N. Ghani, “Jitter performance in ethernet passive optical networks,” Journal of Lightwave Technology, vol.23, no.4, pp.1745- 1753, Apr. 2005.
    [27] A. Varga, “The OMNeT++ discrete event simulation system,” in Proceedings of the European Simulation Multiconference (ESM), pp.319-324, Jun. 2001.
    [28] GPON Power Conservation, ITU-T Rec. G.Sup45., May 2009.
    [29] R.P. Davey, D.B. Grossman, M. Rasztovits-Wiech, D.B. Payne, D. Nesset, A.E. Kelly, A. Rafel, S. Appathurai, S.-H. Yang, “Long-reach passive optical networks,” Journal of Lightwave Technology, vol.27, no.3, pp.273-291, Feb. 2009.
    [30] H. Song; B.-W. Kim, B. Mukherjee, “Long-reach optical access networks: a survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Communications Surveys & Tutorials, vol.12, no.1, pp.112-123, First Quarter 2010.
    [31] G. Kramer, B. Mukherjee, G. Pesavento, “IPACT: a dynamic protocol for an ethernet PON (EPON),” IEEE Communications Magazine, vol.40, no.2, pp.74–80, Feb. 2002.
    [32] Y. Luo, N. Ansari, “Dynamic upstream bandwidth allocation over ethernet PONs,” in Proceedings of 2005 IEEE International Conference on Communications (ICC), vol.3, pp.1853- 1857, May 2005.
    [33] Y. Luo, N. Ansari, “Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over EPONs,” OSA Journal of Optical Networking, vol.4, no.9, pp.561-572, Sept. 2005.

    無法下載圖示 校內:2017-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE