| 研究生: |
章鈞 Chang, Chun |
|---|---|
| 論文名稱: |
抓式致動器步進距離之設計與模擬 Design and Simulation of Stepwise Displacement for Scratch Drive Actuator |
| 指導教授: |
楊世銘
Yang, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 有限元素 、單位步進距離 、抓式致動器 |
| 外文關鍵詞: | finite element, stepwise displacement, scratch drive actuator |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抓式致動器 (SDA)由於其高操作頻寬、高輸出力、工作範圍廣與單位步進制御能力佳,而在微光電系統與微組裝應用中具有潛力。然而,抓式致動器之致動原理受到其幾何尺寸的影響很大,如何精確預測抓式致動器之單位步進距離,是目前缺乏但在設計時卻迫切需要的。本文提出一有限元素模型以建立幾何尺寸的設計規範,並與過去研究之實驗數據比對,以證實模型的可信度。幾何尺寸對於模擬分析結果顯示較小的抓式致動器板長、板寬,適當的板厚與較大的軸襯高度,可以得到較大的單位步進距離設計。此外,為了驗證模型之可信度,本文設計一包含檢視單位步進距離、長距離操作、高頻操作與輸出力之測試晶片,並利用TSMC CMOS 0.35 um 兩層多晶矽四層金屬 3.3V/5V製程,以金屬層作為主結構完成抓式致動器之設計。透過分析,在峰值電壓為100伏特的操作下,板長為52 um、板寬為75 um、板厚為0.64 um與板寬為3.33 um為能提供最大的單位步進距離,高達192.6 nm。後製程則將利用高選擇比的乾蝕刻與溼蝕刻完成抓式致動器的結構釋放。
Scratch drive actuator (SDA) has been proposed in microsystem applications. However, analysis of precise stepwise displacement is critical to the design of scratch drive actuator. A finite element model is developed in this work. The simulation results have been verified by comparing with the experiment data reported previously. The geometry effects of the SDA plate length, plate width, plate thickness, and bushing height have been found through the finite element model. The model is shown to be compatible with various material properties in different fabrication process. Design of the SDA has been implemented under TSMC (Taiwan semiconductor manufacturing company) CMOS (complementary-metal-oxide- semiconductor) 0.35 μm Mixed Signal 2P4M Polycide 3.3V/5V (2P4M) fabrication process. Analysis shows that the stepwise displacement is 192.6 nm for SDA of 52 um in plate length, 75 um in plate width, 0.64 um in plate thickness, and 3.33 um in bushing height under the 100 volt peak voltage. Post-CMOS by dry etch process and wet etch process for high selectivity etching are also developed for releasing the SDA structure.
REFERENCE
Akiyama, T., Shono, K., “A New Step Motion of Polysilicon Microstructures,” Proc. IEEE Micro Electro Mech. Sys. (MEMS’ 93), pp. 272-277, 1993.
Akiyama, T., Fujita, H., “A Quantitative Analysis of Scratch Drive Actuator Using Buckling Motion,” Proc. IEEE Micro Electro Mech. Sys. (MEMS’ 95), pp. 310, 1995.
Akiyama, T., Collard, D., Fujita, H., “Scratch Drive Actuator with Mechanical Links for Self-assembly of Three-Dimensional MEMS,” IEEE J. Microelectromech. Syst., vol. 6, pp. 10-17, Mar. 1997.
Bühler, J., Funk, J., Steiner, F. P., Sarro, P. M., Baltes, H., “Double Pass Metallization for CMOS Aluminum Actuators,” IEEE International Conference on Solid-State Sensors and Actuators (TRANSDUCERS’ 95), vol. 2, pp. 360-363, 1995.
Chu, P. B., Chen, J. T., Yeh, R., Lin, G., “Controlled Pulse-Etching with Xenon Difluoride,” IEEE International Conference on Solid-State Sensors and Actuators (TRANSDUCERS’ 97), vol. 1, pp. 665-668, 1997.
Donald, B. R., Levey, C. G., McGray, C. D., Rus, D., Sinclair, M., “Power Delivery and Locomotion of Untethered Micro-actuators,” Proc. IEEE Micro Electro Mech. Sys. (MEMS’ 03), pp. 124-129, 2003.
Fukuta, Y., Collard, D., Akiyama, T., Yang, E. H., Fujita, H., “Microactuated Self-assembling of 3D Polysilicon Structures with Reshaping Technology,” Proc. IEEE Micro Electro Mech. Sys. (MEMS’ 97), pp. 477-481, 1997.
Hayakawa, K., Torii, A., Ueda, A., “An Analysis of the Elastic Deformation of an Electrostatic Microactuator,” T. IEE Japan, vol. 118-E, pp. 205-211, 1998.
Hsu, F. Y., Yang, S. M., “Design of an Integrated Rotary and Linear Micropositioner by Scratch Drive Actuator,” Master Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, 2003.
Kao, T. C., Lu, S. S., Chang, P. Z., “Study on the Motion Characters and Metal-Structuring of Scratch Drive Actuators,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, 1999.
Langlet, P., Collard, D., Akiyama, T., Fujita, H., “A Quantitative Analysis of Scratch Drive Actuation for Integrated X/Y Motion System,” IEEE International Conference on Solid-State Sensors and Actuators (TRANSDUCERS’ 97), vol. 2, pp. 773-776, 1997.
Lee, S. S., Huang, L. S., Kim, C. J., Wu, M. C., “Free-Space Fiber-Optic Switches Based on MEMS Vertical Torsion Mirrors,” IEEE J. Lightwave Technology, vol. 17, pp. 7-13, Jan. 1999.
Lee, T. H., Yang, S. M., “Design of Dual-Axis Piezoresistive Probe by Standard CMOS Process,” Master Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, 2003.
Li, L., Brown, J. G., Uttamchandani, D., “Study of Scratch Drive Actuator Force Characteristics,” IOP J. Micromech. Microeng., vol. 12, pp. 736-741, 2002.
Lin, L. Y., Shen, J. L., Lee, S. S., Su, G. D., Wu, M. C., “Microactuated Micro-XYZ Stages for Free-space Micro-Optical Bench,” Proc. IEEE Micro Electro Mech. Sys. (MEMS’ 97), pp. 43-48, 1997.
Linderman, R. J., Bright, V. M., “Nanometer Precision Positioning Robots Utilizing Optimized Scratch Drive Actuators,” Sens. Actuators A, vol. 91, pp. 292-300, 2001.
Linderman, R. J., Kladitis, P. E., Bright, V. M., “Development of the Micro Rotary Fan,” Sens. Actuators A, vol. 95, pp. 135-142, 2002.
Millet, O., Bernardoni, P., Régnier, S., Bidaud, P., Tsitsiris, E., Collard, D., Buchaillot, L., “Electrostatic Actuated Micro Gripper Using An Amplification Mechanism,” to appear in Sens. Actuators A, 2004.
Quévy, E., Bigotte, P., Collard, D., Buchaillot, L., “Large Stroke Actuation of Continuous Membrane for Adaptive Optics by 3D Self-Assembled Microplates,” Sens. Actuators A, vol. 95, pp. 183-195, 2002.
Tilmans, H. A. C., Beart, K., Verbist, A., Puers, R., “CMOS Foundry Based Micromachining,” IOP J. Micromech. Microeng., vol. 6, pp. 122-127, 1996.
Toshiyoshi, H., Su, G. D. J., LaCosse, J., Wu, M. C., “ A Surface Micromachined Optical Scanner Array Using Photoresist Lenses Fabricated by A Thermal Reflow Process,” IEEE J. Lightwave Technology, vol. 21, pp. 1700-1708, 2003.
Williams, K. R., Gupta, K., Wasilik, M., “Etch Rates for Micromachining Processing Part II,” IEEE J. Microelectromech. Syst., vol. 12, pp. 761-778, 2003.