| 研究生: |
廖邑崇 Liao, Yi-Chung |
|---|---|
| 論文名稱: |
以3-氨丙基三乙氧基矽烷改質α-氧化鋁及補強環氧樹脂之研究 Modification of α-Al2O3 with 3-aminopropyltriethoxysilane and reinforcing the epoxy resin |
| 指導教授: |
黃紀嚴
Huang, Chi-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 表面改質 、氧化鋁 、3-氨丙基三乙氧基矽烷 |
| 外文關鍵詞: | silane, Al2O3, APS, surface modification |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在日常生活中高分子的應用極為廣泛,為增加使用時的耐用度,提升高分子的本質特性,加上複合概念的興起,以陶瓷粉末填充至高分子之研究,甚至以添加奈米粉末填充至高分子等題目,皆是討論的重點。
本研究使用環氧樹脂為高分子基質,以各種不同重量百分比的α-氧化鋁來補強環氧樹脂,以3-氨丙基三乙氧基矽烷用來進行氧化鋁的表面改質,經過真空抽氣過濾後,以漿料的形式直接填充至環氧樹脂,經過表面改質後之粉末,與環氧樹脂並無產生相分離。
研究顯示改變氧化鋁粉末之酸鹼值,可以得到在鹼性環境中,矽烷的披覆效果最好,由於在FTIR中發現Si-O-Si鍵結但無Si-O-Al鍵結存在,並根據表面電位的量測,推論APS是以縮合完的結構用物理吸附的形式披覆於氧化鋁表面上。
所得出的複合樹脂,最佳的熱處理條件為120℃一小時,可以快速使其硬化,且在1wt%的添加下,因為粉體顆粒分散最佳,故可得到高強度之樹脂,而添加量的增加可提升複合樹脂之熱穩定性質,延緩分解溫度並於600℃時依然保持50%以上的重量。
Polymer is widely applied in the ordinary, especially the epoxy resin because of its high mechanical strength and the adhesive property. With the developing of composite science, the hybrid materials of the ceramics-reinforced polymer researches which focus on the mechanical and thermal properties increases rapidly in the recent years.
The epoxy resin and the α-Al2O3 powders modified by the 3-amino- propyltriethoxysilane (APS) are served as the matrix and the rein- forcement, respectively. The slurry included modified-powders is directly mixing with the epoxy resin with a magnetic stirrer after vacuuming the ethanol as solvent. The instruments analyzing Al2O3/epoxy composites are BET, FTIR, Zeta-Potential, TG, MTS and SEM.
It is observed that the coating effect of the APS is the superior in the base environment with a condensation form by physical adsorption on the α-Al2O3 surface. The excellent strength composite can be synthesized by the 1wt% addition of α-Al2O3 and on the curing condition of 120 oC and 1 hour, and the thermal stability increases with the addition increasing.
[1] Y.M. Chiang, D. Birnie III, W. D. Kingery. Physical Ceramics. Wiley 1997.
[2] E. P. Plueddemann. Silane coupling agents. Plenum Press. 1991.
[3] T. Ung, L.M. Liz-Marzan, P. Mulvaney. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 1998;14:3740-3748.
[4] 邱昱維,α-Al2O3粉末披覆γ-氨丙基三乙氧基矽烷耦合劑之研究,碩士論文,國立成功大學,2005年7月。
[5] M.C. B. Salon, M. Abdelmouleh, S. Boufi, M.N. Belgacem, A. Gandini. Silane adsorption onto fibers: Hydrolysis and condensation reactions. J. Coll. Interf. Sci. 2005;289:249-261.
[6] A.N. Rider. Factors influencing the durability of epoxy adhesion to silane pretreated aluminium. Int. J. Adhes. Adhes. 2006;26:67-78.
[7] R. Pena-Alonso, F. Rubio, J. Rubio, J. L. Oteo. Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy.
[8] S.R. Lu, H.L. Zhang, C.X. Zhao, X.Y. Wang. Preparation and characterization of epoxy-silica hybrid materials by the sol-gel process. J. Mater. Sci. 2005;40:1079-1085.
[9] T.M. Lee, C.C. M. Ma, C.W. Hsu, H.L. Wu. Syntheses of epoxy-bridged polyorganosiloxanes and the effects of terminated alkoxysilanes on cured thermal properties. J. Appl. Poly. Sci. 2006;99:3491-3499.
[10] S.A. Kumar, T.S.N. Sankara Narayanan. Thermal properties of siliconized epoxy interpenetrating coatings. Prog. Organ. Coat. 2002; 45:323-330.
[11] A.M. Shanmugharaj, K.Y. Lee, S. H. Ryu. Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. J. Coll. Interf. Sci. 2006;298:854-859.
[12] Y. Hibi, Y. Enomoto. Lubrication of Si3N4 and Al2O3 in water with and without addition of silane couping agents in the range of 0.05-0.10 mol/l. Trib. Int. 1995;28:97-105.
[13] E. Minor-Perez, R. Mendoza-Serna, J. Mendez-Vivar, R.C. Pless, D. Quintana-Zavala, R. Torres-Robles. Preparation and characterization of multicomponent porous materials prepared by the sol-gel process. J. Porous Mater. 2006;13:13-19.
[14] V. F .F. Barbosa, K. J. D. MacKenzie, C. Thaumaturgo. Synthesis and characterization of material based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorgan. Mater. 2000;2:309-317.
[15] 呂維明、戴怡德,粉粒體粒徑量測技術,高立圖書,1998。
[16] M. P. Stevens. Polymer Chemistry. Oxford. 1999.
[17] K.C. Vrancken, K. Possmiers, P. Van Der Voort, E.F. Vansant. Surface modification of silica gels with aminoorganosilanes. Coll. Surf. 1995; 98:235-241.
[18] D.J. Kim, P.H. Kang, Y.C. Nho. Characterization of mechanical properties of γAl2O3 dispersed epoxy resin cured by γ-ray radiation. J. Appl. Poly. Sci. 2004;91:1898-1903.
[19] J.H. Lee, H.C. Yoon. Properties of epoxy molding compound according to the pretreatment method of an amino-silane coupling agent on epoxy or phenol resin. J. Appl. Poly. Sci. 2006;100: 2171-2179.
[20] B. Wetzel, P. Rosso, F. Haupert, K. Friedrich. Epoxy nano- composites – fracture and toughening mechanisms. Engin. Frac. Mech. 2006;73:2375-2398.
[21] B. Wetzel, F. Haupert, M.Q. Zhang. Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 2003;63:2055-2067.
[22] G. Shi, M.Q. Zhang, M.Z. Rong, B. Wetzel, K. Friedrich. Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear. 2004;256:1072-1081.
[23] Q.L. Ji, M.Q. Zhang, M.Z. Rong, B. Wetzel, K. Friedrich. Tribological properties of surface modified nano-alumina/ epoxy composites. J. Mater. Sci. 2004;39:6487-6493.
[24] P. Rosso, L. Ye, K. Friedrich, S. Sprenger. A toughened epoxy resin by silica nanoparticle reinforcement. J. Appl. Poly. Sci. 2006;100: 1849-1855.
[25] P. Bajaj, N.K. JHA, A. Kumar. Effect of coupling agents on thermal and electrical properties of Mica/Epoxy composites. J. Appl. Poly. Sci. 1995;56:1339-1347.
[26] J. Jang, J. Bae, K. Lee. Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer. 2005;46:3677-3684.
[27] M. Abboud, M. Turner, E. Duguet, M. Fontanille. PMMA-based composite materials with reactive ceramic fillers Part 1.-Chemical modification and characterization of ceramic particles. J. Mater. Chem. 1997;7:1527-1532.
[28] E. Duguet, M. Abboud, F. Morvan, M. Fontanille. PMMA encapsulation of alumina particles through aqueous suspension polymerization processes. Macromol. Symp. 2000;151:365 -370.
[29] Y. G. Yatluk, N.A. Zhuravlev, O.V. Koryakova, L.K. Neudachina, Yu. A. Skorik. New hybrid chelating sorbents with grafted 3-amino- propionate groups based on mixed silicon, aluminum, titanium, or zirconium oxides. Russ. Chem. Bullet. 2005;54:1836-1841.
[30] U. F. Ilhan, E. F. Fabrizio, L. McCorkle, D.A. Scheiman, A. Dass, A. Palczer, M.A. B. Meador, J.C. Johnston, N. Leventis. Hydrophobic monolithic aerogels by nanocasting polystyrene on amin-modifed silica. J. Mater. Chem. 2006; 16:3046-3054.
[31] K. Yao, Y. Imai, L.Y. Shi, A. M. Dong, Y. Adachi, K. Nishikubo, E. Abe, H. Tateyama. The functional layered organosilica materials prepared with anion surfactant templates. J. Coll. Interf. Sci. 2005;285:259-266.
[32] M. Etienne, A. Walcarius. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta. 2003;59:1173-1188.