| 研究生: |
簡奕光 Chien, Yi-Kuang |
|---|---|
| 論文名稱: |
BaTiO3-(Bi0.5Na0.5)TiO3 系統之晶體結構、顯微結構、及介電性質之研究 Crystal structure, microstructure, and dielectric properties of BaTiO3-(Bi0.5Na0.5)TiO3 system |
| 指導教授: |
黃啟原
Huang, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鈦酸鋇 、(Bi0.5Na0.5)TiO3 、介電常數 、溫度-電容曲線 |
| 外文關鍵詞: | barium titanate, temperature coefficient of capacitance curve, (Bi0.5Na0.5)TiO3, dielectric properties |
| 相關次數: | 點閱:83 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討添加 (Bi0.5Na0.5)TiO3 至 BaTiO3 中對於其晶體結構、顯微結構及介電性質之影響。由實驗結果顯示,可在煅燒條件為 800℃/3 h 下,可合成出單一相 BaTiO3-(Bi0.5Na0.5)TiO3 粉末,並由 XRD 分析可判斷粉末為正方晶相之結晶結構,隨著 (Bi0.5Na0.5)TiO3 添加量增加,發現 c 軸縮短,a 軸伸長,正方性下降。藉由觀察燒結收縮曲線,可知添加 (Bi0.5Na0.5)TiO3 至 BaTiO3 中可以幫助燒結,添加量 2、5、10 與 20 mol% 分別可在 1200℃/3 h 和1300℃/3 h 條件下可獲得緻密的 BaTiO3-(Bi0.5Na0.5)TiO3 陶瓷體,其晶粒大小可控制小於 1 μm 內,且相對密度達 95% 以上,而添加 (Bi0.5Na0.5)TiO3 至 BaTiO3 中可令居禮溫度有效提升至 140℃ 以上之外,但同時會令介電常數下降,且無法有效令電容變化率降低,因此後續在 2 mol% (Bi0.5Na0.5)TiO3 之樣品添加 0.5 與 1.5 mol% MgO,發現添加 MgO 有幫助燒結之效果,可令燒結溫度降低,添加量 0.5 與 1.5 mol% 分別可在 1250℃/3 h 和1200℃/3 h 條件下可獲得緻密的 BaTiO3 陶瓷體,添加量 0.5 與 1.5 mol% MgO 分別在 1200℃/3 h 和1150℃/3 h 之樣品具弛緩體特性,Tc 與 To-t 兩個相轉換溫度相當接近,所以令兩相轉換溫度間之介電常數較高,而由於相轉換溫度區間外的電容值較低,因此電容變化率無法有效降低。添加量 0.5 與 1.5 mol% MgO 分別在 1200℃/3 h 和1150℃/3 h 時,不具弛緩體特性,樣品之 TCC 曲線隨 MgO 增加有平坦之趨勢,在 1.5 mol% MgO 時可接近 X8R 規格。
In this study crystal structure, microstructure and dielectric properties of BaTiO3-(Bi0.5Na0.5)TiO3 were investigate. Various (Bi0.5Na0.5)TiO3 were added into BaTiO3 powders to change the Curie temperature. As the results, single phase of tetragonal BaTiO3-(Bi0.5Na0.5)TiO3 powders has been synthesized under the condition of 800℃/3 h. The tetragonality and spontaneous polarization decreases as the (Bi0.5Na0.5)TiO3 content increases. (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (x = 0, 2, 5, 10, 20) was sintered under the condition of 1200℃/3 h and 1300℃/6 h, respectively, by conventional sintering. The Tc (Curie temperature) increases with the more (Bi0.5Na0.5)TiO3 content﹐but the dielectric constant decreases.
Extra 0.5 and 1.5 mol% MgO were added into BaTiO3-(Bi0.5Na0.5)TiO3 powders (BNT content = 2 mol%). As the MgO content was increased, the sintering temperature was decreased. In the case of 0.5 and 1.5 mol% MgO addition, the sintered bulk was obtained under the condition of 1200℃/3 h and 1250℃/3 h, respectively. With Mg2+ occupied into Ti site, the charged oxygen vacancies generated. Because it can lead deformation of crystal structure, the addition of MgO flattened the Temperature Coefficient of Capacitance curve.
1. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, John Wiley & Sons, New York, 18 [1], 1979.
2. P. Hofmann, Solid State Physics: An Introduction, John Wiley & Sons, New York, 2008.
3. B. Tang, S. R. Zhang, Y. Yuan, X. H Zhou, and Y. S Llang, “Influence of CaZrO3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics,” Sci. China Ser. E-Tech. Sci., 51 [9], 1451-1456, 2008.
4. H. S. Young, and H. H. Young, “Effects of Rare-Earth Oxides on Temperature Stability of Acceptor-Doped BaTiO3.” Jpn. J. Appl. Phys, 44 [8], 6143–6147, 2005.
5. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate.” J. Am. Ceram. Soc., 49 [1], 33-36, 1966.
6. K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis” Jap. J. Appl. Phys., 48 [9], 09KC05-09KC05-4, 2009.
7. J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System,” Jap. J. Appl. Phys., 46 [10B], 6999-7004, 2007.
8. Q. Feng, and C. J. McConville, “Weak-Beam Dark-Field Microscopy of Complex Stress States in X7R-Type BaTiO3 Dielectric Core–Shell Structures,” J. Am. Ceram. Soc., 87 [10], 1945-1951, 2004.
9. G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine‐grained barium titanate ceramics,” J. Appl. Phys., 58 [4], 1619-1625, 1985.
10. M. H. Frey, and D. A. Payne, “Grain-size effect on structure and phase transformations for barium titanate,” Ame. Phys. Soc., 54 [5], 3158-3168, 1996.
11. D. Hennings and A. Schnell, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics, ” J. Am. Ceram. Soc., 65 [11], 539-544, 1982.
12. T. R. Armstrong, L. E. Morgens, A. K. Maurice, and R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Cerum. Soc., 72 [4], 605-11, 1989.
13. R. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W Hackenberger, and S. E. Park, “New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics,” Jpn. J. Appl. Phys., 40 [10], 5999-6002, 2001.
14. T. T. Fang, H. L. Hsieh, and F. S. Shiau, “Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High-Purity Barium Titanate” J. Am. Ceram. Soc., 76 [5], 1205–1211, 1993.
15. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex composition,” Sov. Phys.-Solid State, 2 [11], 2651-2654, 1961.
16. J. Suchanicz, “Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3,” J. Phys. Chem. Solids, 62, 1271-1276, 2001.
17. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3,” Acta Cryst., B58, 168-178, 2002.
18. Y. Hiruma, H. Nagata, and T. Takenaka, “Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., 45 [9B], 7409-7412, 2006.
19. G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds,” Sov. Phys., Solid State (Engl.Transl.), 1[10], 1429-1437, 1960.
20. 吳朗,電子陶瓷-介電,全欣科技圖書,1994。
21. R. E. Eitel, C. A. Randall, T. R. Shrout, and P. W. Rehrig, “New high temperature Morphotropic phase boundary piezoelectric based on Bi(Me)O3-PbTiO3 ceramics,” Jpn. J. Appl. Phys., 40, 5999-6002, 2001.
22. B. Tang, S. R. Zhang, X. H. Zhou, Y. Yuan and L. B. Yang,“Preparation and modification of high Curie point BaTiO3-based X9R ceramics,” J. Electroceram, 25, 93–97, 2010.
23. L. X. Li, Y. M. Han, P. Zhang, C. Ming and X. Wei, “Synthesis and characterization of BaTiO3-based X9R ceramics,” J. Mater. Sci., 44, 5563–5568, 2009.
24. Y. Yuan, S. R. Zhang, X. H. Zhou, B. Tang and B. Li, “High-temperature capacitor materials based on modified BaTiO3,” J. E. Mater., 38, 5, 2009.
25. H. D. Li, C. D. Feng and W. L. Yao, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition,” Materials Letters, 58, 1194– 1198, 2004.
26. Y. Yuan, M. Du, S. Zhang and Z. Pei, “Effects of BiNbO4 on the microstructure and dielectric properties of BaTiO3-based ceramics,” J. Mater. Sci., 20, 157–162, 2009.
27. J. Suchanicz, J. Kusz and H. Bohm, “Structural and electric characteristics of (Na0.5Bi0.5)0.50Ba0.50TiO3 and (Na0.5Bi0.5)0.20Ba0.80TiO3 ceramics,” Materials Science and Engineering, B97, 154-159, 2003.
28. L. Gao, Y. Huang, Y. Hu and H. Du, “Dielectric and ferroelectric properties of (1−x)BaTiO3-xBi0.5Na0.5TiO3 ceramics,” Ceramics International, 33, 1041–1046, 2007.
29. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchia and T. Okuda, “The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3,” Journal of the European Ceramic Society, 19, 1043-1046, 1999.
30. Y. Yuan, X. H. Zhou, B. Li and S. R. Zhang, “ Effects of BiNbO4 and Nb2O5 additions on the temperature stability of modified BaTiO3,” Ceramics–Silikáty , 54[3], 258-262, 2010.
31. D. Hennings and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3,” Journal of the American Ceramic Society, 67, 4, 1984.
32. H. I. Hsiang, L. T. Mei and Y. J. Chun, “Dielectric properties and microstructure of Nb-Co codoped BaTiO3–(Bi0.5Na0.5)TiO3 Ceramics,” J. Am. Ceram. Soc., 92[11], 2768–2771, 2009.
33. H. Chazono and H. Kishi, “Sintering characteristics in BaTiO3–Nb2O5–Co3O4 ternary system: I, electrical properties and microstructure,” J. Am. Ceram. Soc., 82[10], 2689–2797, 1999.
34. X. Xu and G. E. Hilmas, ‘‘Effects of Ba6Ti17O40 on the dielectric properties of Nb-doped BaTiO3 ceramics,’’ J. Am. Ceram. Soc., 89[8], 2496–2501, 2006.
35. Y. Park, Y. H. Kim and H. G. Kim, “The effect of grain size on dielectric behavior of BaTiO3 based X7R materials,” Mater. Lett., 28, 101-106, 1996.
36. K. Sakata, T. Takenaka and Y. Naitou, “ Phase-relations, dielectric and piezoelectric properties of ceramics in the system (Bi0.5Na0.5)TiO3-PbTiO3,” Ferroelectrics, 7, 347-349, 1974.
37. 李瑋志,(Bi0.5Na0.5)TiO3 無鉛壓電陶瓷系統之結構與介電性質之關聯性,國立成功大學資源工程研究所博士論文,民國九十八年。
38. L. Wu, M. C. Chure, K. K. Wu, W. C. Chang, M. J. Yang, W. K. Liu, and M. J. Wu, “Dielectric properties of barium titanate ceramics with different materials powder size,” Ceram. Intern., 35[3], 957–960, 2009.
39. S. W. Kwon, and D. H. Yoon, “Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment,“J. Eur. Ceram. Soc., 27[1], 247–252, 2007.
40. J. Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3,” Japanese Journal of Applied Physics, 43[8], 5373–5377, 2004.
41. T. Nagai and K. Iijima, “Effect of MgO Doping on the Phase Transformations of BaTiO3.” J. Am. Ceram. Soc., 83[1] , 107–12, 2000.