簡易檢索 / 詳目顯示

研究生: 陳又菱
Chen, You-ling
論文名稱: 以液相磊晶法製備單晶碳化矽的製程開發及生長機制的研究
Process development and growth mechanism of the single crystal SiC by liquid phase epitaxy
指導教授: 黃肇瑞
Huang, Jow-lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 143
中文關鍵詞: 液相磊晶碳化矽
外文關鍵詞: SiC, liquid phase epitaxy
相關次數: 點閱:97下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於工業界缺乏可用的 SiC 單晶基材,本研究欲首次使用液相生長法,加快 SiC 磊晶的生長速度及降低其晶格的缺陷密度,製備SiC 單晶。液相的原子距離接近固體,而且液相為固體的溶劑,所以沈積會和溶解交替在介面進行,這樣可把缺陷(如差排)處的原子逐漸鬆調整。另一方面,完美晶格處的原子能量最低,不會受到介面原子調整的影響,這樣生長的磊晶其晶格可以慢慢趨於完美。研究中使用一個能同時溶解基材及磊晶的稀土元素-過渡金屬共晶溶劑於矽晶上,反應生成碳化矽單晶,並沿著原本矽晶晶格結構成長,生成大面積3C-SiC 單晶。在生長的過程中,溶解與沈積接近平衡,因此磊晶的晶格可以保持穩定。除此之外,磊晶與基材的原子間距可以逐漸改變,而非一次到位,這樣可以避免差排或空位的形成。研究中將以XRD, SEM, TEM 與Raman 光譜對材料的晶相、微結構、鍵結等特性進行分析,找出最佳的液相合金配方與製程參數。

    本研究是利用 Sm 和 Co 當作液相共溶溶劑,於 1000~1300℃ 時利用液相磊晶法製備 SiC 單晶。本研究主要分成三個部分,第一個部分探討利用粉末當作溶劑時對生長碳化矽的影響。由此部分的實驗結果,容易發生所生長的碳化矽膜不均勻的現象。為了改善此現象,本研究的第二個部分利用了鍍膜溶劑的方式取代粉末作為溶劑,雖然改善了所生長的碳化矽膜不均勻問題,但也容易生長出釤矽化合物。而第三個部分則探討所生長的碳化矽成長機制。

    由第一和第二部分結果顯示,當 Sm:Co=64:36 at.% 共晶點的成分時,可以在 1100~1300℃ 環境下生長出 3C-SiC 的結構,也有部分六方晶 6H-SiC 生成。由 SEM 結果顯示,生成的碳化矽有多種形貌,推測片狀和島狀的碳化矽是以液相反應所產生,而絲狀的碳化矽則以氣相反應產生。由橫截面的結果顯示,利用液相磊晶方法可以在矽晶圓上先生成一層單晶碳化矽,再生成一層多晶碳化矽,接著是非晶碳化矽。由電子背向繞射儀和橫截面的結果顯示,所成長的碳化矽指向會延續矽晶圓的結構,成長為立方晶結構,並且大致上長出和矽基板同方向的 (111) 面。而利用粉末當作溶劑時,會有氧化及碳化矽鍍膜不均勻的問題產生。利用鍍膜溶劑雖然改善碳化矽膜不均勻問題,卻也出現產生釤矽化合物的問題。

    在本研究中,碳化矽的生長主要經由液相和氣相的方式生長。實驗中的島狀和片狀結構主要是經由液相生長,利用溶劑溶解出碳和矽,經由碳的擴散至矽基板,取代矽的位置成為碳化矽,成為緻密且均勻的碳化矽磊晶層。而其他絲狀結構則主要經由氣相反應,氣相反應則經由氣固凝核機制(VS mechanism)及氣液固機制(VLS mechanism)生長而成。

    Till now, there are no SiC single crystal wafers produced by industrial scale. In this study, it is first time we try to use liquid phase epitaxy method to produce SiC single crystal. The feature of this research is that the complicated atomic adjustments are self motivated in the liquid. We do not have to manupulate atoms, just control the temperature gradient. On the original surface of silicon wafer, there will be etching and deposition going back and forth. A stable chemical gradient will
    be established at the interface where pure silicon is gradually changed to silicon carbide, and then pure diamond. This can be done with the alloy of rare earth metals and iron group metals. A silicon wafer can be sputter coated with La in vacuum and it is consecutively sputtered with nickel to avoid the oxidation. The coated wafer then be placed in a graphite mold. The assembly is then heated in a vacuum furnace to melt the La-Ni. In this case, the silicon wafer will float on the liquid as the density of silicon is less than a quarter of the molten alloy. With the silicon wafer foating on molten liquid, both silicon and graphite will dissolve into the liquid.The temperature of the liquid must be controlled in such a way that the dissolution is not too fast to cause rapid growth of diamond that would be defect ridden. On the other hand, the dissolution must not be too slow as no SiC is formed. Ths as-formed SiC wafer was characterized by the SEM,TEM, and Raman spectroscopy, XPS etc.

    In this research, we use liquid phase epitaxy method to produce SiC single crystal at 1000℃ to 1300℃ by using Sm and Co as solvent. This research has three parts: the first part tries to discuss the influence of using Sm-Co powder as solvent on growing SiC. From the results of this part, it is easier to grow SiC films inconsistently happened. In order to improve this phenomenon, the second part, we use Sm-Co coating to replace powders as solvent. Using Sm-Co film as solvent improves the SiC film more uniformly, but also grown Sm-Si-O compounds. The third part discusses the growth mechanism of the SiC.

    From the results of first and second parts, it can grow 3C-SiC and 6H-SiC at 1000℃ to 1300℃ using Sm:Co=64:36 at.% as solvent. From SEM results, because of temperature gradient transversely, the SiC morphology has big differences. It is infer that the island-like SiC grown from liquid phase, and SiC whiskers grown from vapor phase. From cross section results, using liquid phase epitaxy method can produce SiC single crystal on Si wafer, and then grown polycrystalline SiC gradually, amorphous SiC finally. From EBSD and cross section results, the single crystal SiC films continue the Si wafer’s structure and direction. The SiC films have cubic structure and 〈111〉 growth direction, the same as Si wafer. The epitaxial relationship between the single crystal SiC layer and Si substrate wad determined to be [111]3C-SiC//[111]Si. Using powders as solvents has problems in oxidation and SiC films inconsistently, but using coating as solvents grow Sm-Si-O compounds.

    In our research, the SiC grown from liquid and vapor phase. The silicon wafer will float on the liquid as the density of silicon is less than a quarter of the molten alloy. With the silicon wafer floating on molten liquid, both silicon and graphite will dissolve into the liquid. The C atoms diffuse to Si surface, and then substitute for the Si sites and grow to SiC films. The growth mechanism of SiC whiskers grown up by the vapor-liquid-solid (VLS) or vapor-solid (VS) growth process.

    中文摘要...........................................................................................................I Abstract.........................................................................................................III 致謝..................................................................................................................V 總目錄..........................................................................................................VIII 圖目錄...........................................................................................................XII 表目錄..........................................................................................................XIX 第一章. 緒論 1.1 前言....................................................................................................1 1.2 研究動機與目的................................................................................3 第二章. 基礎理論 2.1 碳化矽的結構....................................................................................5 2.2 碳化矽的性質....................................................................................9 2.3 碳化矽的應用..................................................................................12 2.4 碳化矽的製備方法 2.4.1 塊材...................................................................................13 2.4.2 薄膜...................................................................................23 2.4.3 纖維...................................................................................32 2.4.4 鬚晶...................................................................................32 2.5 薄膜生長理論..................................................................................35 2.6 磊晶生長理論..................................................................................38 2.7 鬚晶生長理論..................................................................................40 第三章. 研究方法及步驟 3.1實驗構想...........................................................................................46 3.2實驗流程............................................................................................49 3.3實驗材料...........................................................................................50 3.4實驗裝置...........................................................................................52 3.5實驗程序 3.5.1試片清洗............................................................................52 3.5.2 濺鍍步驟及條件...............................................................55 3.5.3 真空高溫爐.......................................................................55 3.5.4 清洗實驗完成之試片.......................................................57 3.6 性質分析之儀器 3.6.1 X-Ray 繞射分析...............................................................59 3.6.2 拉曼光譜儀.......................................................................60 3.6.3 X光光電子能譜儀.............................................................62 3.6.4 掃瞄式電子顯微鏡...........................................................64 3.6.5 穿透式電子顯微鏡...........................................................64 3.6.6 背向散射電子繞射分析...................................................65 第四章. 結果與討論 4.1 以釤、鈷(Sm, Co)混合粉末當作溶劑來製備碳化矽 4.1.1 不同溶劑成分、不同成長溫度對生長碳化矽的影響 4.1.2 X-ray分析.............................................................................66 4.1.3 薄膜鍵結分析.........................................................................72 4.1.4 薄膜表面形貌觀察.................................................................79 4.1.5 薄膜晶體結構分析.................................................................84 4.1.6 生長機制探討.........................................................................92 4.1.7 橫截面觀察.............................................................................94 4.2 以釤、鈷(Sm,Co)薄膜當作溶劑來製備碳化矽 4.2.1 不同溶劑成分、不同成長溫度對生長碳化矽的影響 4.2.2 X-ray 分析..........................................................................101 4.2.3 薄膜鍵結分析.......................................................................103 4.2.4 薄膜表面形貌觀察...............................................................110 4.2.5 薄膜晶體結構分析...............................................................110 4.2.6 生長機制探討.......................................................................117 4.2.7 橫截面觀察...........................................................................117 4.3 磊晶指向關係................................................................................120 4.4 碳化矽薄膜的生長機制 4.4.1 液相反應......................................................................126 4.4.2 氣相反應 4.4.2.1 氣固凝核機制.................................................127 4.4.2.2 氣液固機制.....................................................130 第五章. 結論..............................................................................................135 第六章. 參考資料......................................................................................137

    參考資料
    [1]. R. R. Siergiej ea al. , Materials Science and Engineering , B61-62 , 9-17 (1999).
    [2]. J.A. Cooper , Jr. , Materials Science and Engineering , B44 , 387-391, (1997).
    [3]. 宋健民,鑽石底碳化矽:LED的夢幻基材,工業材料雜誌,2007.
    [4]. 宋健民,“鑽石底半導體”及“鑽石的半導體”,鑽石工業雜誌,102-113 (2006).
    [5]. Motohiro Iwami , Silicon carbide : fundamentals , Nuclear Instruments and Methods in Physics Research A 466 406–411, (2001).
    [6]. P A lvanov and V E Chelnokov , Recent developments in SiC single-crystal electronics, Semicond. Sci. Technol. 7 863-880 (1992).
    [7]. Carl-Mikael Zetterling , Process technology for silicon carbide devices , (2002).
    [8]. D.Chaussende , P J Wellmann and M Pons , Status of SiC bulk growth processes , J. Phys. D: Appl. Phys. 40 6150–6158(2007).
    [9]. 林博文,碳化矽及其他碳化物,陶瓷技術手冊,745-776(1994).
    [10]. A.Chayahara , A.Masuda , T.mura , and Y.Osaka , Jpn. J. Appl. Phys. , 25 , L564 (1986).
    [11]. X. J. Ning and P. Pirouz , Jr. , J. Mater. Rev., 11 , 884 (1996).
    [12]. A. R. Verma and P. Krishna , Polymorphism and polytypism in crystals , John Wiley &Sons(1966).
    [13]. Willian D. Callister , Jr. , Materials Science and Engineering An Introduction , Wiley (1999).
    [14].李文鴻,“電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究”,國立台灣科技大學化學工程技術研究所博士論文,(1994).
    [15]. Y.-M. Li , B.F.Fieselmann , A.Catalano , Amorphous and crystalline silicon carbide IV, Springer-Verlag 229(1992).
    [16].黃振倉,“碳化矽奈米針製備及其形成機制之研究”,國立清華大學材料科學工程研究所博士論文,(1997).
    [17]. T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Crystal Growth, 115 (1991).
    [18]. G. Rahder, M. N. P. Carren~o, Journal of Non-Crystalline Solids, 352(2006).
    [19]. L. G. Matus, L. Tong, M. Mehregany, D. J. Larkin, P. G. Neudeck, Inst. Phys. Conf., ed. M. G. Spencer, R. P. Devary, J. A. Edmond, M. Khan, P. Kaplan, M. Rahman, Institute of Physics Publishing, DC, USA, 137 (1993).
    [20]. W. F. Knippenberg, Philips Res. Rep. (Netherlands), vol.18 161 – 274 (1963).
    [21]. Yu. M. Tairov, V. F. Tsvetkov, J. Cryst. Growth (Netherlands), vol.52 146-150(1981).
    [22]. A. S. Segal et al, Mater. Sci. Eng. (Netherlands), vol.B61-62 40-3(1999).
    [24]. R. Yakimov et al, Mater. Sci. Eng. (Netherlands), vol.B61-62, 54–7 (1999).
    [25]. A. Ellison et al, Mater. Sci. Eng. (Netherlands), vol.B61-62, 113–120 (1999).
    [26]. D. H. Hoffmann, M. H. Muller, Mater. Sci. Eng. (Netherlands), vol.B61- 62, 29-39(1999).
    [27]. F. Hatakeyama, S. Kanzaki, J. Am. Ceram. Soc., 73, 2107(1990).
    [28]. I. S. Seog, C. H. kim, J. Mater. Sci. 28, 3227(1993).
    [29]. W. Zhu, G. Y. Zhao, V. Revankaar, V. Hlavacek, J. Mater. Sci., 28, 659 (1993).
    [30]. J. Y. Guo, F. Gitzhofr, M. I. Boulos, J. Mater. Sci., 30, 5889(1995).
    [31]. P. D. Ramesh, B. Vaidhyanathan, M. Ganguli, R.J. Rao, J. Mater. Res. 9,
    3025(1994).
    [32]. V. F. Tsvetkov, S. T. Allen, H. S. Kong, C. H. Carter, Jr., Inst. Phys. Conf. Ser., 142, 17(1997).
    [33]. Dieter H. Hofmann, Matthias H. Muller, Materials Science and Engineering, B61–62 29–39 (1999).
    [34]. Y. M. Tairov, Y. A. Vodakov, Topics in Applied Physics 17: Electroluminescence, Springer, Berlin, 31(1977).
    [35]. Y. M. Tairov, N. S. Peev, N. A. Smirnova, A. A. Kalnin, Cryst. Res. Technol. 21, 1503(1986).
    [36]. F. A. Halden, Proc. Conf. on Silicon Carbide, Boston 1959, Pergamon Press, 115(1960).
    [37]. R. I. Scace, G. A. Slack, J. Chem. Phys. 30, 1551(1959).
    [38]. R. N. Hall, J. Appl. Phys. 29, 914(1958).
    [39]. H. Kleykamp, G. Schumacher, Ber. Bunsenges. Phys. Chem. 9, 799 (1993).
    [40]. Andrey S. Bakin, International Journal of High Speed Electronics and Systems, vol.15, No.4, 747-780(2005).
    [41]. Yoon Soo Park, SiC Materials and devices, 52(1998).
    [42]. M. Syvajarvi, R. Yakimova, M. Tuominen, A. Kakanakova-Georgieva, M. F. MacMillan, A. Henry, Q. Wahab, E. Janzen, J. Crystal Growth 197(1999).
    [43].平井敏雄、淺倉寬行、佐佐木真,日本金屬學會會報,26,809(1987).
    [44]. S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, Handbook of Plasma Processing Technology, Nays, New Jersey, 261-268(1990).
    [45]. M. Komatz, K. Matsuishi, S. K. Hong, T. Yao, phys. stat. sol., No. 3, 571–574 (2006).
    [46]. A. A. Burk Jr.,1, M.J. OÕLoughlin, H. D. Nordby Jr., Journal of Crystal Growth, 200 (1999).
    [47]. T. S. Sudarshan, S. I. Maximenko, MicroElectronic Engineering, 83, 155-159, (2006).
    [48]. D. H. Hofmann, and M. H. Müller, Materials Science and Engineering, B61-62, 29-39(1999).
    [49]. M. Syväjärvi et al, J. Crystal. Growth, 197, 147-154(1999).
    [50]. O. Filip, B. Epelbaum, M. Bickermann, A. Winnacker, J. Crystal Growth, 271, 142-150(2004).
    [51]. Y. M. Tairov, Y. A. Vodakov, Topics in Applied Physics 17: Electroluminescence, Springer, Berlin, p. 31. (1977).
    [52]. L. B. Griffiths, A. I. Mlavsky, J. Electrochem. Soc. 7 , 805(1964).
    [53]. R. Yakimova, M. Tuominen, A. S. Bakin, J. O. Fornall, A. Vehanen, E. Janzen, Inst. Phys. Conf.Ser., 142, 101(1996).
    [54]. Y. M. Tairov, N.S. Peev, N.A. Smirnova, A. A. Kalnin, Cryst. Res. Technol., 21, 1503, (1986).
    [55].工研院經資中心 ITIS 計畫,2001.07.
    [56]. Y. Kimura, T. Koesashi, T.Yagasaki and Fukazawa, Proc. 3rd Conf.
    Aluminum Alloys. Trondheim, Norway, 467(1992).
    [57]. P. F. Becher and G. C. Wei, J. Am. Ceram. Soc. , 67., 267-C 269(1984).
    [58]. Y. H. Gao, Y. Bando, K. Kurashima, T. Sato, Scripta mater, 44, 1941 (2001).
    [59]. W. Yang, H. Araki, A.Hohyama, Q. Hu, H. Suzuki, Tetsuji Noda, J. Am. Ceram. Soc., 87, 733(2004).
    [60]. P. A. Janeuay, Ceram. Ind. 4, 42(1992).
    [61]. Milton Ohring, Material Science of Thin Films, 357-415(2002).
    [62]. T. V. Baker, J. Chem. Soc. Trans., Vol.89, 1120(1906).
    [63]. T. V. Baker, Mineral. Mag., Vol.14, 235(1907).
    [64]. T. V. Baker, Z. Kristallogr., Vol.45, 1(1908).
    [65]. L. Royer, Ann. Phys., 23, 16(1935).
    [66]. J. H. van der Merwe, J. Appl. Phys., 34, 117(1963).
    [67]. W. Ballmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin, 1970.
    [68]. P. H. Pumphery, Grain Boundary Structure and Properties, ed. G. A. Chanwick and D. A. Smithe, Academic Press, New York, 139(1976).
    [69]. R. W. Balluffi, A Brokman and A. H. King, Acta Metal., 30, 1453(1982).
    [70]. A. Brokman and R. W. Balluffi, Acta Metal., 29, 1703(1981).
    [71]. Yapsir AS, Choi CH, Lu TM, Journal of Applied Physics, 67, 769-79 (1990).
    [72]. F. C. Frank, “Influence of dislocations on crystal growth”, Disscuss. Faraday Soc., 5, 47(1949).
    [73]. D. A. Porter and K. E. Eastering, Phase Transformation in Metals and Alloys, Van Nostrand Reinhold Co., NY, 202(1981).
    [74]. D. J. Cheng, W. J. Shyy , M. H. Hon, Scripta Metallurgica, Vol. 20, 11, 1587-1590(1986).
    [75]. C. H. Chu, Y. M. Lu, M.H. Hon, Journal of Materials Science,Vol.27, 14, 3883-3888(1992).
    [76]. L. Geng, J. Zhang, A study of the crystal structure of a commercial SiC whisker by high resolution TEM, Mater. Chem. Phys., 84, 243-246 (2004).
    [77]. Fu Qiangang, Li Hejun, Shi Xiaohong, Li Kezhi, Hu Zhibiao, Wei Jian, Materials Letters, 59, 2593 – 2597(2005).
    [78]. Yu et al., Solid State Communication, 109, 677-682(1999).
    [79]. Peidong Yang and Charles M. Lieber, J. Mater. Res., 12, 2981(1997).
    [80]. L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang, L. D. Zhang, Appl. Phys. A, 74, 587(2002).
    [81]. C. E. Ryan, I. Berman, R. C. Marshall, D. P. Considine and J. J. Hawley, J. Crystal Growth, 1, 255(1967).
    [82]. J. V. Milewski, F. D. Gac, J. J. Petrovic, S. R. Skaggs, Journal of Materials Science, 20, 1160-1166(1985).
    [83]. William G. Moffatt , The handbook of binary phase diagrams, Schenectady, New York(1990).
    [84].N. E. Topp., The chemistry of the rare-earth elements,(1965).
    [85].F. H. Spedding, A.H.Paane, The rare-earths,(1961).
    [86].Muhammad Nasir Khan, Shin-ichi Nishizawa, Wook Bahng and Kazuo Arai, Materials Science Forum Vols., 338-342, 233-236 (2000).
    [87].M. Syvajarvi, R. Yakimova, I. G. Ivanov, E. Janzen, Materials Science and Engineering B46, 329-332(1997).
    [88].M.Muller, M. Bickermann, D. Hofmann, A. –D. Weber and A. Winnacker, Materials Science Forum Vols., 264-268, 69-72 (1998).
    [89].M.Syväjärvi, R. Yakimova, and E. Janzén , Journal of The Electrochemical Society, 146, 4, 1565-1569 (1999).
    [90].Akira Tanaka, Tatsuya Ataka, Eiji Ohkura and Hironobu Katsuno, Japanese Journal of Applied Physics, 43, 11A, 7670-7671(2004).
    [91].Jun Lin Liu, Ji Qiang Gao, Ji Kuan Cheng, Jian Feng Yang, Guan Jun Qiao, J. Mater. Sci., 42, 6148-6152(2007).
    [92].H.P. Klug, L. E. Alexander, “X-ray Diffraction Procedures”, Wiley, New York, 1974.
    [93].成功大學微奈米中心
    [94]. Brazilian, Journal of Physics, vol.28, no.1, (1998).
    [95].汪建民,“材料分析”,中國材料科學學會,(2005)。
    [96].黃宏盛,林麗娟,“FE-SEM/CL/EBSD分析技術簡介”,工業材料雜誌,201,99-108(2003).
    [97]. Hugh O. Pierson, Handbook of refractory carbides and nitrides : properties, characteristics, processing, and applications,(1996).
    [98]. Guangyi Yang, Renbing Wu, Yi Pan, Jianjun Chen, Rui Zhai, Lingling Wu, Jing Lin , Physica E 39 171–174 (2007).
    [99]. Gleb N. Yushin, Z. Goknur Cambaz, and Yury Gogotsi, J. Am. Ceram. Soc., 91 [1] 83–87 (2008).
    [100]. Huang Feng-ping, Li He-jun, Li Ke-zhi, Wang Chuan-hui, Trans. Nonferrous Met. SOCC., 16, s483-s487(2006).
    [101]. Guangyi Yang, Renbing Wu, Yi Pan, Jianjun Chen, Rui Zhai, Lingling Wu, Jing Lin, Physica E 39 , 171–174(2007).
    [102]. Guangyi Yang, Renbing Wu, Jianjun Chen, Yi Pan,Rui Zhai, Lingling Wu and Jing Lin, Nanotechnology 18, 155601(2007).
    [103]. Maher Soueidan, Gabriel Ferro, Olivier Kim-Hak, Francois Cauwet and Bilal Nsouli, Crystal growth and design, vol.8, No.3, 1044-1050 (2008).
    [104]. H.S. Kong, J.T. Glass, R.F. Davis, J. Appl. Phys. 64, 2672(1988).
    [105]. H. Matsunami, K. Shibahara, N. Kudora, S. Nishino, in:G.L. Harris, C.Y.-W. Yang (Eds.), Amorphous and Crystalline Silicon Carbide, Vol. 34, Springer, Berlin, Heidelberg, 34~39(1989).Fu
    [106]. Qiangang, Li Hejun, Shi Xiaohong, Li Kezhi, Hu Zhibiao, Wei Jian, Materials Letters, 59, 2593 – 2597 (2005).
    [107]. Vadym G. Lutsenko, Acta Materialia, 56, 2450–2455 (2008).

    下載圖示 校內:2010-07-29公開
    校外:2010-07-29公開
    QR CODE