| 研究生: |
洪妙能 Hung, Miao-Neng |
|---|---|
| 論文名稱: |
探索胰臟癌小鼠模型中骨骼肌萎縮現象 Skeletal muscle atrophy in mouse model of pancreatic cancer |
| 指導教授: |
黃柏憲
Huang, Po-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 胰臟癌 、惡質病 、肌肉萎縮 |
| 外文關鍵詞: | Pancreatic, cancerCachexia, Muscle atrophy |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大多數癌症患者到晚期後,例如結腸直腸癌,胰臟癌,食道癌和肺癌,通常患者身體體態都非常瘦弱,此現象稱為癌症惡質病(Cachexia)。惡質病是一個多重複雜的代謝疾病,最常見的臨床特徵是非自願性的體重明顯減輕以及肌肉和脂肪被耗損殆盡。然而,胰臟癌死亡率極高,相較於其他癌症,早期並沒有特別症狀,當診斷發現時已經是晚期,不僅加上腫瘤轉移特性及預後不佳的情形,若病患同時又患有惡質病是否也是造成高死亡率的原因之一。先前研究報導代謝因子和發炎因子如IL-6,TNF-α和IL-1β等,藉由肌肉細胞受體接收後進而活化蛋白降解訊號路徑造成肌肉萎縮。在臨床上,利用抑制蛋白降解訊號路徑抑制劑或是營養補充方式治療,但是僅限於解緩惡質病帶來的症狀,對於惡質病本身治療機制仍然不清楚。惡質病病患明顯有肌肉萎縮現象,為了了解其中造成肌肉萎縮的原因,在我們的研究中,先建立一個胰臟癌誘導惡質病的小鼠模型並利用觀察體重變化,抓力測量及螢光染色鑑定惡質病的小鼠模型及進行肌肉組織分析,藉此,希望能夠改善癌症誘發惡質病病患嚴重肌肉萎縮現象。
SUMMARY
Most patients in advance stage cancers such as colorectal, pancreatic, esophageal, and lung cancers often have emaciated body figures, known as cancer cachexia. Cachexia is a complex metabolic syndrome, and the most common clinical feature is the apparent weight loss rate and decreased muscle and fat mass. However, the prognosis was poor when diagnosed with pancreatic cancer in the late stage. Cancer-induced cachexia in pancreatic cancer patients is one of the causes of high mortality in pancreatic cancer. Previous studies reported that catabolic factors and inflammatory factors, such as IL-6, TNF-α and IL-1, can activate protein degradation pathway via binding to muscle cell receptors, and thus lead to muscle atrophy. In clinical care, by inhibition of protein degradation pathway or by nutritional supplement only reliefs symptoms, with limited benefits in reversing the cachexia symptoms. In patients with cachexia, there is obvious muscle atrophy. In order to understand and disease mechanisms the cause is needed system-wide analyses of muscle atrophy, to establish an available pancreatic cancer cachexia mouse model. Body weight changes, grip strength measurement and fluorescent staining in cachexia mouse model. Therefore, it is hoped that the severe muscle atrophy of cancer induced cachexia patients can be improved.
1 Muscaritoli, M., Rossi Fanelli, F. & Molfino, A. Perspectives of health care professionals on cancer cachexia: results from three global surveys. Annals of oncology : official journal of the European Society for Medical Oncology 27, 2230-2236, doi:10.1093/annonc/mdw420 (2016).
2 DeWys, W. D. Pathophysiology of cancer cachexia: current understanding and areas for future research. Cancer research 42, 721s-726s (1982).
3 Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nature reviews. Disease primers 4, 17105, doi:10.1038/nrdp.2017.105 (2018).
4 Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. The Lancet. Oncology 12, 489-495, doi:10.1016/S1470-2045(10)70218-7 (2011).
5 Gullett, N. P., Mazurak, V. C., Hebbar, G. & Ziegler, T. R. Nutritional interventions for cancer-induced cachexia. Current problems in cancer 35, 58-90, doi:10.1016/j.currproblcancer.2011.01.001 (2011).
6 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA: a cancer journal for clinicians 68, 7-30, doi:10.3322/caac.21442 (2018).
7 Yan, Y., Fu, G. & Ming, L. Role of exosomes in pancreatic cancer. Oncology letters 15, 7479-7488, doi:10.3892/ol.2018.8348 (2018).
8 Bachmann, J., Buchler, M. W., Friess, H. & Martignoni, M. E. Cachexia in patients with chronic pancreatitis and pancreatic cancer: impact on survival and outcome. Nutrition and cancer 65, 827-833, doi:10.1080/01635581.2013.804580 (2013).
9 Bruggeman, A. R. et al. Cancer Cachexia: Beyond Weight Loss. Journal of oncology practice 12, 1163-1171, doi:10.1200/JOP.2016.016832 (2016).
10 Dewey, A., Baughan, C., Dean, T., Higgins, B. & Johnson, I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. The Cochrane database of systematic reviews, CD004597, doi:10.1002/14651858.CD004597.pub2 (2007).
11 Pappalardo, G., Almeida, A. & Ravasco, P. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism. Nutrition 31, 549-555, doi:10.1016/j.nut.2014.12.002 (2015).
12 Baracos, V. E. Skeletal muscle anabolism in patients with advanced cancer. The Lancet. Oncology 16, 13-14, doi:10.1016/S1470-2045(14)71185-4 (2015).
13 van Dijk, D. P. et al. Effects of oral meal feeding on whole body protein breakdown and protein synthesis in cachectic pancreatic cancer patients. Journal of cachexia, sarcopenia and muscle 6, 212-221, doi:10.1002/jcsm.12029 (2015).
14 Hall, K. D. & Baracos, V. E. Computational modeling of cancer cachexia. Current opinion in clinical nutrition and metabolic care 11, 214-221, doi:10.1097/MCO.0b013e3282f9ae4d (2008).
15 Friesen, D. E., Baracos, V. E. & Tuszynski, J. A. Modeling the energetic cost of cancer as a result of altered energy metabolism: implications for cachexia. Theoretical biology & medical modelling 12, 17, doi:10.1186/s12976-015-0015-0 (2015).
16 Kir, S. & Spiegelman, B. M. Cachexia & Brown Fat: A Burning Issue in Cancer. Trends in cancer 2, 461-463, doi:10.1016/j.trecan.2016.07.005 (2016).
17 VanderVeen, B. N., Fix, D. K. & Carson, J. A. Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation. Oxidative medicine and cellular longevity 2017, 3292087, doi:10.1155/2017/3292087 (2017).
18 Zhang, G. et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nature communications 8, 589, doi:10.1038/s41467-017-00726-x (2017).
19 Murphy, K. T. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. American journal of physiology. Heart and circulatory physiology 310, H466-477, doi:10.1152/ajpheart.00720.2015 (2016).
20 Chal, J. & Pourquie, O. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104-2122, doi:10.1242/dev.151035 (2017).
21 Structure and Function of Skeletal Muscle. The Physician and sportsmedicine 5, 34-48, doi:10.1080/00913847.1977.11710570 (1977).
22 Pawlikowski, B., Pulliam, C., Betta, N. D., Kardon, G. & Olwin, B. B. Pervasive satellite cell contribution to uninjured adult muscle fibers. Skeletal muscle 5, 42, doi:10.1186/s13395-015-0067-1 (2015).
23 Fuchs, E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811-819, doi:10.1016/j.cell.2009.05.002 (2009).
24 Bentzinger, C. F., von Maltzahn, J. & Rudnicki, M. A. Extrinsic regulation of satellite cell specification. Stem cell research & therapy 1, 27, doi:10.1186/scrt27 (2010).
25 Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625-3637, doi:10.1242/dev.064162 (2011).
26 Sousa-Victor, P., Garcia-Prat, L., Serrano, A. L., Perdiguero, E. & Munoz-Canoves, P. Muscle stem cell aging: regulation and rejuvenation. Trends in endocrinology and metabolism: TEM 26, 287-296, doi:10.1016/j.tem.2015.03.006 (2015).
27 Judge, S. M. et al. Skeletal Muscle Fibrosis in Pancreatic Cancer Patients with Respect to Survival. JNCI cancer spectrum 2, pky043, doi:10.1093/jncics/pky043 (2018).
28 Teunissen, S. C. et al. Symptom prevalence in patients with incurable cancer: a systematic review. Journal of pain and symptom management 34, 94-104, doi:10.1016/j.jpainsymman.2006.10.015 (2007).
29 Tashjian, A. H., Jr. Role of prostaglandins in the production of hypercalcemia by tumors. Cancer research 38, 4138-4141 (1978).
30 Fearon, K. C., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell metabolism 16, 153-166, doi:10.1016/j.cmet.2012.06.011 (2012).
31 Loomans, H. A. & Andl, C. D. Intertwining of Activin A and TGFbeta Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion. Cancers 7, 70-91, doi:10.3390/cancers7010070 (2014).
32 Loumaye, A. et al. Role of Activin A and myostatin in human cancer cachexia. The Journal of clinical endocrinology and metabolism 100, 2030-2038, doi:10.1210/jc.2014-4318 (2015).
33 Togashi, Y. et al. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer letters 356, 819-827, doi:10.1016/j.canlet.2014.10.037 (2015).
34 Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704-1708, doi:10.1126/science.1065874 (2001).
35 Ebner, N., Anker, S. D. & von Haehling, S. Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 11th Cachexia Conference. Journal of cachexia, sarcopenia and muscle 10, 218-225, doi:10.1002/jcsm.12408 (2019).
36 Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100-104, doi:10.1038/nature13528 (2014).
37 Sagar, G. et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 65, 1165-1174, doi:10.1136/gutjnl-2014-308350 (2016).
38 Sidler, B. et al. Amplification of the parathyroid hormone-related peptide gene in a colonic carcinoma. The Journal of clinical endocrinology and metabolism 81, 2841-2847, doi:10.1210/jcem.81.8.8768840 (1996).
39 He, W. A. et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proceedings of the National Academy of Sciences of the United States of America 111, 4525-4529, doi:10.1073/pnas.1402714111 (2014).
40 Piekarz, R. L. & Bates, S. E. Epigenetic modifiers: basic understanding and clinical development. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 3918-3926, doi:10.1158/1078-0432.CCR-08-2788 (2009).
41 Mihaylova, M. M. & Shaw, R. J. Metabolic reprogramming by class I and II histone deacetylases. Trends in endocrinology and metabolism: TEM 24, 48-57, doi:10.1016/j.tem.2012.09.003 (2013).
42 Phelps, M. P., Bailey, J. N., Vleeshouwer-Neumann, T. & Chen, E. Y. CRISPR screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America 113, 15090-15095, doi:10.1073/pnas.1610270114 (2016).
43 Kee, H. J. & Kook, H. Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. Journal of biomedicine & biotechnology 2011, 928326, doi:10.1155/2011/928326 (2011).
44 Montgomery, R. L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. The Journal of clinical investigation 118, 3588-3597, doi:10.1172/JCI35847 (2008).
45 McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860-867, doi:10.2337/db07-0843 (2008).
46 Gregoire, S. et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Molecular and cellular biology 27, 1280-1295, doi:10.1128/MCB.00882-06 (2007).
47 Henderson, S. E. et al. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42. Neoplasia 18, 765-774, doi:10.1016/j.neo.2016.10.003 (2016).
48 Colussi, C. et al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America 105, 19183-19187, doi:10.1073/pnas.0805514105 (2008).
49 Hong, S. et al. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nature medicine 23, 223-234, doi:10.1038/nm.4245 (2017).
50 Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI insight 3, doi:10.1172/jci.insight.99263 (2018).
51 Tan, B. H. & Fearon, K. C. Cachexia: prevalence and impact in medicine. Current opinion in clinical nutrition and metabolic care 11, 400-407, doi:10.1097/MCO.0b013e328300ecc1 (2008).
52 Chen, C. et al. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorganic & medicinal chemistry 16, 5606-5618, doi:10.1016/j.bmc.2008.03.072 (2008).
53 Weyermann, P. et al. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PloS one 4, e4774, doi:10.1371/journal.pone.0004774 (2009).
54 Michaelis, K. A. et al. Establishment and characterization of a novel murine model of pancreatic cancer cachexia. Journal of cachexia, sarcopenia and muscle 8, 824-838, doi:10.1002/jcsm.12225 (2017).
55 Kuzuhara, S., Kanazawa, I., Nakanishi, T., Tomonaga, M. & Sugita, H. [Centronuclear (myotubular) myopathy in a middle-aged woman--histochemical and biochemical study of the muscle biopsy (author's transl)]. Rinsho shinkeigaku = Clinical neurology 19, 8-16 (1979).
56 Song, S. et al. The HDAC3 enzymatic activity regulates skeletal muscle fuel metabolism. Journal of molecular cell biology 11, 133-143, doi:10.1093/jmcb/mjy066 (2019).
校內:2024-07-26公開