簡易檢索 / 詳目顯示

研究生: 廖俊德
Liao, Jyun-De
論文名稱: 氧化亞銅之形成導絲及氧化鎳之錫摻雜對於p-Cu2O/n-ZnO光檢測器影響其光響應特性之研究
A Study of the Effects of Cu2O Forming Conductive Filament and Tin-doped NiO Layer on the Photo Response of the p-Cu2O/n-ZnO Photodetector
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 錫摻雜氧化鎳氧化亞銅氧化鋅自供電電子阻障層紫外光/可見光光檢測器
外文關鍵詞: tin doped NiO, undoped NiO, Cu2O, ZnO, electron block layer, ultraviolet/visible, photodetector
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討利用錫摻雜的氧化鎳以降低電子阻障層的串連電阻,應用在氧化亞銅/氧化鋅異質接面光檢測器在偏壓與自供電(self-powered)時之特性影響。滿足化學劑量的NiO(鎳氧比為1:1)在室溫下是絕緣體其電阻值為1013 Ωcm,其電阻值可以藉由摻雜不同原子使鎳空缺增而降低,研究了本論文之元件電流電壓(I-V)特性,發現加偏壓時,氧化亞銅薄膜裡會形成部分導絲並利用電阻式記憶體之導絲特性來解釋光檢測器負偏壓之特性。
    首先將包含錫離子或鎳離子的前導溶液以旋轉塗佈的方式塗佈於透明導電玻璃基板上,再放進烤箱進行退火,退火過程中將碳鍵打斷使錯和物形成錫摻雜的氧化鎳,接著將退火完成的元件浸入硫酸銅水溶液,用電化學沉積法沉積氧化亞銅,緊接著將元件濺鍍氧化鋅晶種層於氧化亞銅上,再使用化學水浴沉積法合成氧化鋅奈米柱陣列,最後在氧化鋅奈米柱陣列上濺鍍鉑電極,完成錫摻雜的氧化鎳/氧化亞銅/氧化鋅異質光檢測器。
    接著量測與分析有或無錫摻雜的氧化鎳會對於氧化亞銅/氧化鋅異質接面光檢測器特性之影響。操作在零偏壓下且照450 nm波長之可見光之元件,擁有錫摻雜的氧化鎳之光檢測器相對於無摻雜的氧化鎳之元件擁有較快的響應速度,其上升速度分別為無摻雜之元件為51.72 ms及有摻雜之元件38.26 ms。
    零偏壓下且照370 nm波長之紫外光之元件,其上升速度分別為無摻雜之元件為15.7 s及有摻雜之元件9.9 s,無論照射450 nm波長之可見光及370 nm波長之紫外光在零偏壓條件下載子,傳輸速度都是摻雜之元件較快速,此結果歸因於錫摻雜的氧化鎳電洞濃度較無摻雜錫的氧化鎳高以及串連電阻較低,因此照射450 nm及370 nm波長之可見光時能有較快速的傳輸光產生載子。
    在此元件中,氧化亞銅及氧化鋅都是可以當作電阻式記憶體的材料,我們證明此光檢測器無論是否有照射光,都具有電阻式記憶體之特性。當光檢測器操作在-1 V下時(電壓小於氧化亞銅電阻式記憶體的set電壓),此時在氧化亞銅薄膜可能形成部分導絲,因為氧化亞銅的set電壓比氧化鋅奈米柱(元件中較厚的薄膜)的低,由於這原因,使得在-1 V的暗電流(或漏電流)會比零偏壓下還要來得大,故此元件在-1 V下,無論是照射450 nm或370 nm波長的光所得到的光暗電流比都比0 V要來的小。
    儘管存在此缺點,但本研究之元件仍具有優勢,包括低成本、製程簡易、能以自供電模式實現低耗能以及響應速度快之優點。

    This thesis studies the photo-detecting characteristics of tin doped p-NiO/p-Cu2O/n-ZnO nanorod heterojunction photodetectors (PDs). Stoichiometric NiO is an insulator with a resistivity about the order of 1013 Ωcm-2 at room temperature. Its resistivity can be lowered by increasing of nickel vacancy by doping. The current-voltage (I-V) characteristics of the devices were investigated. A partial forming of the conductive filaments of the Cu2O film with a small voltage bias could explain some phenomenon of the photo responses of the device.
    The tin-ion and/or nickel-ion containing precursor solution was spin-coated on an indium tin oxide (ITO) glass substrate followed by furnace annealing. During the annealing, the carbon-carbon bond broke and transformed the coordinated complex to a tin-doped or un-doped NiO. The polycrystalline p- film was electrodeposited onto the NiO film and then a ZnO seed layer was deposited on the film using sputtering technique. Subsequently, the ZnO nanorod (NR) arrays were synthesized by chemical bath deposition method. Finally, a Platinum film, as the top electrode, was sputtered onto the ZnO nanorod arrays using a shadow mask for patterning the electrode.
    Under 450 nm visible light illuminated on the NiO/p-Cu2O/n-ZnO PD and at zero bias (i.e. self-powered), PD with a tin-doped NiO layer has higher response speed than that of the un-doped NiO one. The rise times of the PDs with or without tin-doping in NiO layer are 38.26 ms and 51.72 ms, respectively.
    The rise times of the PDs with or without tin-doping in NiO layer under 370nm light illumination at 0 V are 9.9s and 15.7s, respectively. This improvement of the response speed can be attributed to tin-doped NiO layer having a higher hole concentration and a lower series resistance.
    In this device, the Cu2O and ZnO films both have been reported can be used as a material for resistive memory. In this study, we show that this PD itself exhibits RRAM characteristics with or without light illumination. When the PD under reverse bias voltage of 1 V, (less than the Cu2O RRAM setting voltage), a portion of conductive filaments are likely formed in the Cu2O film because it has lower setting voltage than that of the ZnO NRs (much thicker film). As a result, it induces a higher dark current (or leakage current) at 1V than that at self-powered mode (0V). Therefore, at 1V, the on-off current ratios of the PDs illuminated with a 450nm or a 370nm light are smaller than it operates at 0V.
    Despite of this drawback, the studied PD has some advantages, including low-cost, simple process, capable of self-power mode for low energy consumption, and fast response time.

    考試合格證明………………………………………………………………....I 中文摘要……………………………………………………………………..II 英文摘要…………………………………..…….…………………………..IV 目錄………………………………………………………………………...VII 圖目錄………………………………………………………………………..X 表目錄…………………………………………………………………….XIII 1 第一章 緒論 1 1-1 前言 1 1-1-1 光檢測器 1 1-1-2 電阻式記憶體 2 1-2 材料特性 3 1-2-1 氧化亞銅(Cuprous Oxide)特性 3 1-2-2 氧化鋅(Zinc Oxide)特性 6 1-2-3 氧化鎳(Nickel Oxide)特性 8 1-3 研究動機 9 2 第二章 基礎理論 10 2-1 元件基礎理論 10 2-1-1 P-N接面 10 2-1-2 金屬-半導體接面 13 2-1-3 蕭基接觸 14 2-1-4 歐姆接觸 16 2-2 半導體光檢測器 17 2-2-1 光檢測器操作原理 17 2-2-2 光導體光檢測器 17 2-2-3 光二極體光檢測器 18 2-3 光檢測器之響應速度 19 2-4 自偏壓效應(SELF-POWER) 19 2-5 電阻式記憶體 21 2-6 傳導機制 21 3 第三章 實驗方法及步驟 23 3-1 實驗材料 23 3-2 製程設備系統 25 3-2-1 方形高溫爐 26 3-2-2 旋轉塗佈機 27 3-2-3 電化學恆電位電流儀 28 3-2-4 真空濺鍍系統 30 3-3 薄膜分析及量測儀器 32 3-3-1 X光繞射光譜儀(XRD) 33 3-3-2 X射線光電子能譜儀 36 3-3-3 電性參數分析儀與氙燈光源(B1500) 36 3-3-4 場發射掃描式電子顯微鏡(FE-SEM) 37 3-3-5 四點探針薄膜量測系統 39 3-4 製程步驟與參數 41 3-4-1 氧化銦錫透明導電玻璃基板清洗過程 43 3-4-2 氧化鎳摻錫與氧化鎳薄膜沉積 44 3-4-3 電化學沉積氧化亞銅薄膜(COPY TORO) 46 3-4-4 濺鍍氧化鋅(ZnO)晶種層 46 3-4-5 化學水浴合成法沉積氧化鋅奈米柱 48 3-4-6 濺鍍鉑電極 49 4 第四章 結果與討論 50 4-1 薄膜材料分析 50 4-1-1 場發射掃描式電子顯微鏡分析 50 4-1-2 薄膜電阻 56 4-1-3 X光繞射分析 57 4-1-4 化學分析電子光譜儀(XPS) 62 4-2 光檢測器電性分析 64 4-2-1 光暗電流I-V圖 64 4-2-2 響應時間比較與分析 65 5 第五章 結論及未來研究方向 75 5-1 結論 75 5-2 未來研究方向 75 參考文獻 76

    [1] Zhai, Tianyou, et al. "A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors." Sensors 9.8 (2009): 6504-6529.
    [2] Peng, Lin, Linfeng Hu, and Xiaosheng Fang. "Low‐dimensional nanostructure ultraviolet photodetectors." Advanced Materials 25.37 (2013): 5321-5328.
    [3] Game, Onkar, et al. "ZnO (N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor." Nanoscale 6.1 (2014): 503-513.
    [4] Konstantatos, Gerasimos, and Edward H. Sargent. "Nanostructured materials for photon detection." Nature nanotechnology 5.6 (2010): 391-400.
    [5] Torres, Omar, et al. "Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview." Journal of Geophysical Research: Atmospheres 112.D24 (2007).
    [6] Lupan, Oleg, et al. "Focused‐ion‐beam fabrication of ZnO nanorod‐based UV photodetector using the in‐situ lift‐out technique." physica status solidi (a) 205.11 (2008): 2673-2678.
    [7] Walker, D., et al. "High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN." Applied physics letters 74.5 (1999): 762-764.
    [8] Guo, Fawen, et al. "A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection." Nature nanotechnology 7.12 (2012): 798-802.
    [9] Liao, Meiyong, Yasuo Koide, and Jose Alvarez. "Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact." Applied Physics Letters 87.2 (2005): 022105.
    [10] Östlund, Ludwig, et al. "4H‐and 6H‐SiC UV photodetectors." physica status solidi c 9.7 (2012): 1680-1682.
    [11] Kokubun, Yoshihiro, et al. "Sol-gel prepared β-Ga 2 O 3 thin films for ultraviolet photodetectors." Applied physics letters 90.3 (2007): 031912.
    [12] Xie, Yannan, et al. "Low dark current metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO 2 films." Journal of Applied Physics 109.2 (2011): 023114.
    [13] Chen, Hao, et al. "General Fabrication of Monolayer SnO2 Nanonets for High‐Performance Ultraviolet Photodetectors." Advanced Functional Materials 22.6 (2012): 1229-1235.
    [14] Lin, Yun-Yue, et al. "Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes." Applied Physics Letters 92.23 (2008): 205.
    [15] Hatch, Sabina M., Joe Briscoe, and Steve Dunn. "A self‐powered ZnO‐nanorod/CuSCN UV photodetector exhibiting rapid response." Advanced Materials 25.6 (2013): 867-871.
    [16] Chtouki, T., et al. "Spin-coated Tin-doped NiO thin films for third order nonlinear optical applications." Optik 136 (2017): 237-243.
    [17] Lee, Myoung-Jae, et al. "2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications." 2007 IEEE International Electron Devices Meeting. IEEE, 2007.
    [18] Yang, Yu Chao, et al. "Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application." Nano letters 9.4 (2009): 1636-1643.
    [19] Chen, Yu-Sheng, et al. "Forming-free HfO 2 bipolar RRAM device with improved endurance and high speed operation." 2009 International Symposium on VLSI Technology, Systems, and Applications. IEEE, 2009.
    [20] Janipour, Mohsen, et al. "A novel adjustable plasmonic filter realization by split mode ring resonators." Journal of Electromagnetic Analysis and Applications 2013 (2013).
    [21] Hourdakis, E., and A. G. Nassiopoulou. "High-density MIM capacitors with porous anodic alumina dielectric." IEEE transactions on electron devices 57.10 (2010): 2679-2683.
    [22] Yu, Muxi, et al. "Novel vertical 3D structure of TaO x-based RRAM with self-localized switching region by sidewall electrode oxidation." Scientific reports 6 (2016): 21020.
    [23] Wu, Yi, Byoungil Lee, and H-S. Philip Wong. "Ultra-low power Al 2 O 3-based RRAM with 1μA reset current." Proceedings of 2010 International Symposium on VLSI Technology, System and Application. IEEE, 2010.
    [24] Liu, Kou-Chen, et al. "Transparent resistive random access memory (T-RRAM) based on Gd 2 O 3 film and its resistive switching characteristics." 2010 3rd International Nanoelectronics Conference (INEC). IEEE, 2010.
    [25] Mikolov, Tomas, et al. "Learning longer memory in recurrent neural networks." arXiv preprint arXiv:1412.7753 (2014).
    [26] Acharyya, Debanjan, A. Hazra, and P. Bhattacharyya. "A journey towards reliability improvement of TiO2 based resistive random access memory: a review." Microelectronics reliability 54.3 (2014): 541-560.
    [27] Ielmini, Daniele. "Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth." IEEE Transactions on Electron Devices 58.12 (2011): 4309-4317.
    [28] Cagli, Carlo, et al. "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction." 2008 IEEE International Electron Devices Meeting. IEEE, 2008.
    [29] Long, Shibing, et al. "Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM." Scientific reports 3.1 (2013): 1-8.
    [30] Aref, A. A., et al. "Cu2O nanorod thin films prepared by CBD method with CTAB: Substrate effect, deposition mechanism and photoelectrochemical properties." Materials Chemistry and Physics 127.3 (2011): 433-439.
    [31] Fujimoto, K., Oku, T., & Akiyama, T. (2013). Fabrication and characterization of ZnO/Cu_2 O solar cells prepared by electrodeposition. Applied Physics Express, 6(8), 086503.
    [32] Musa, A. O., T. Akomolafe, and M. J. Carter. "Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties." Solar Energy Materials and Solar Cells 51.3-4 (1998): 305-316.
    [33] Deuermeier, Jonas, et al. "Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide." Journal of Applied Physics 109.11 (2011): 113704.
    [34] Chen, Kunfeng, Congting Sun, and Dongfeng Xue. "Morphology engineering of high performance binary oxide electrodes." Physical Chemistry Chemical Physics 17.2 (2015): 732-750.
    [35] Lee, Jaeyoung, and Yongsug Tak. "Epitaxial Growth of Cu2 O (111) by Electrodeposition." Electrochemical and Solid State Letters 2.11 (1999): 559.
    [36] Lee, Yuan-Gee, et al. "The effect of electrolyte temperature on the electrodeposition of cuprous oxide films." Int. J. Electrochem. Sci 12 (2017): 507-516.
    [37] Kang, Zhuo, et al. "Electronic structure engineering of Cu 2 O film/ZnO nanorods array all-oxide pn heterostructure for enhanced photoelectrochemical property and self-powered biosensing application." Scientific reports 5 (2015): 7882.
    [38] Özgür, Ümit, et al. "A comprehensive review of ZnO materials and devices." Journal of applied physics 98.4 (2005): 11.
    [39] Xu, Sheng, and Zhong Lin Wang. "One-dimensional ZnO nanostructures: solution growth and functional properties." Nano Research 4.11 (2011): 1013-1098.
    [40] Recio, J. M., et al. "Compressibility of the high-pressure rocksalt phase of ZnO." Physical Review B 58.14 (1998): 8949.
    [41] Kirkham, Melanie, et al. "Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process." Nanotechnology 18.36 (2007): 365304.
    [42] Saunders, Ruth B. Theoretical and experimental studies of ZnO nanowires grown by vapour phase transport. Diss. Dublin City University, 2012.
    [43] Greene, Lori E., et al. "General route to vertical ZnO nanowire arrays using textured ZnO seeds." Nano letters 5.7 (2005): 1231-1236.
    [44] Znaidi, Lamia. "Sol–gel-deposited ZnO thin films: A review." Materials Science and Engineering: B 174.1-3 (2010): 18-30.
    [45] Kang, Zhuo, et al. "Electronic structure engineering of Cu 2 O film/ZnO nanorods array all-oxide pn heterostructure for enhanced photoelectrochemical property and self-powered biosensing application." Scientific reports 5 (2015): 7882.
    [46] Soci, Cesare, et al. "ZnO nanowire UV photodetectors with high internal gain." Nano letters 7.4 (2007): 1003-1009.
    [47] Du, G. T., et al. "Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis." Applied physics letters 89.5 (2006): 052113.
    [48] Cao, Bingqiang, and Weiping Cai. "From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions." The Journal of Physical Chemistry C 112.3 (2008): 680-685.
    [49] Hewlett, Robert M., and Martyn A. McLachlan. "Surface structure modification of ZnO and the impact on electronic properties." Advanced materials 28.20 (2016): 3893-3921.
    [50] Molecular Dynamics Simulation of Gas Adsorption Properties on the Zinc Oxide Surface
    [51] Hotový, I., et al. "Characterization of NiO thin films deposited by reactive sputtering." Vacuum 50.1-2 (1998): 41-44.
    [52] Sato, H., et al. "Transparent conducting p-type NiO thin films prepared by magnetron sputtering." Thin solid films 236.1-2 (1993): 27-31.
    [53] Adler, David, and Julius Feinleib. "Band structure of magnetic semiconductors." Journal of Applied Physics 40.3 (1969): 1586-1588.
    [54] Mrowec, S., and Zbigniew Grzesik. "Oxidation of nickel and transport properties of nickel oxide." Journal of Physics and Chemistry of Solids 65.10 (2004): 1651-1657.
    [55] Caruge, J. M., et al. "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers." Nature photonics 2.4 (2008): 247-250.
    [56] Waser, R., and M. Aono. "BNanoionics-based resistive switching memories,[Nature Mater., vol. 6." (2007): 833-840.
    [57] Gibson, Elizabeth A., et al. "A p‐type NiO‐based dye‐sensitized solar cell with an open‐circuit voltage of 0.35 V." Angewandte Chemie 121.24 (2009): 4466-4469.
    [58] Ohta, Hiromichi, et al. "UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO." Thin Solid Films 445.2 (2003): 317-321.
    [59] Choi, Jeong-M., and Seongil Im. "Ultraviolet enhanced Si-photodetector using p-NiO films." Applied Surface Science 244.1-4 (2005): 435-438.
    [60] Zhang, J. Y., et al. "Electronic and transport properties of Li-doped NiO epitaxial thin films." Journal of Materials Chemistry C 6.9 (2018): 2275-2282.
    [61] Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. John wiley & sons, 2006.
    [62] Hu, Chenming. Modern semiconductor devices for integrated circuits. Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2010.
    [63] Neamen, Donald A. "Semiconductor Physics & Devices: Basic Principles, Irwin, The McGrae-Hill Companies." (1997).
    [64] Hatch, Sabina M., Joe Briscoe, and Steve Dunn. "A self‐powered ZnO‐nanorod/CuSCN UV photodetector exhibiting rapid response." Advanced Materials 25.6 (2013): 867-871.
    [65] Bard, Allen J., and Larry R. Faulkner. "Fundamentals and applications." Electrochemical Methods 2.482 (2001): 580-632.
    [66] 鄭信民,林麗娟(2002).X光繞射應用簡介.工業材料雜誌.181期,
    [67] 羅聖全(2008).研發奈米科技的基本工具之一-電子顯微鏡介紹-SEM.材料世界網
    [68] Al-Ghamdi, A. A., et al. "Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method." Journal of Alloys and Compounds 486.1-2 (2009): 9-13.
    [69] Sridaeng, Duangruthai, et al. "Preparation of rigid polyurethane foams using low-emission catalysts derived from metal acetates and ethanolamine." e-Polymers 16.4 (2016): 265-275.
    [70] Nateq, Mohammad Hossein, and Riccardo Ceccato. "Enhanced Sol–Gel Route to Obtain a Highly Transparent and Conductive Aluminum-Doped Zinc Oxide Thin Film." Materials 12.11 (2019): 1744.
    [71] Paracchino, Adriana, et al. "Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy." The Journal of Physical Chemistry C 116.13 (2012): 7341-7350.
    [72] Brandt, I. S., et al. "Electrodeposition of Cu 2 O: growth, properties, and applications." Journal of Solid State Electrochemistry 21.7 (2017): 1999-2020.
    [73] Li, Qingwei, et al. "Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method." Applied Surface Science 256.6 (2010): 1698-1702.
    [74] Sun, Ye, et al. "Hydrothermal growth of ZnO nanorods aligned parallel to the substrate surface." The Journal of Physical Chemistry C 112.25 (2008): 9234-9239.
    [75] Vandelli, Luca, et al. "Comprehensive physical modeling of forming and switching operations in HfO2 RRAM devices." 2011 International Electron Devices Meeting. IEEE, 2011.

    下載圖示 校內:2025-06-17公開
    校外:2025-06-17公開
    QR CODE