簡易檢索 / 詳目顯示

研究生: 賴蓓盈
Lai, Pei-Ying
論文名稱: 含金奈米顆粒之高分子薄膜於非揮發性電阻式記憶體之特性研究
Investigation and characterization of Au nanoparticles incorporated polymer thin films for nonvolatile resistance random access memories
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 129
中文關鍵詞: 電阻式記憶體金奈米顆粒高分子非揮發性記憶體
外文關鍵詞: resistance random access memory (RRAM), Au nanoparticles (Au NPs), polymer, nonvolatile memory
相關次數: 點閱:137下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非揮發性記憶體為現今許多消費性電子產品中不可或缺之重要元件,電阻式隨機存取記憶體(resistance RAM, RRAM)因具備高密度、低成本、低功耗及非揮發特性等優點,故已廣泛的被視為研究重點之一。目前對於電阻轉換機制的討論仍尚未有明確的定論,因而影響電阻式記憶體商品化的可靠度與時機。
    本論文針對高分子電阻式非揮發性記憶體進行系統性的研究,以旋轉塗佈的方式製作高分子主動層(active layer)薄膜,其中內含包覆硫醇分子之金奈米顆粒(Au nanoparticles,Au NPs),高分子薄膜的角色為主動層基質(matrix)和電子捐贈者(electron donor),而Au NPs則作為電子接受者(electron acceptor)。將記憶元件製作成金屬(Al)/主動層(Au NPs+polymer)/金屬(Al)的結構,觀察與探討此「有機+無機」複合材料組成的記憶體元件,其電性量測結果(I-V characteristics,Retention test,C-f curves)與電阻轉換行為的相關性,進一步推測其電阻轉換機制,並改善記憶體之功能特性。
    本論文研究主要分為四個階段,第一階段為探討記憶體效能與金奈米顆粒外所包覆的硫醇分子碳鏈長度之關連性。研究中以不同碳鏈長度硫醇分子(1-octanethiol(C8),1-dodecanethiol(C12),和1-octadecanethiol(C18))修飾的金奈米顆粒,再添加於polystyrene(PS)和8-hydroxyquinoline(8HQ)混合高分子薄膜內,作為元件主動層。結果發現不同碳鏈長度的硫醇分子對於電子穿遂的阻抗,並未表現在臨界電壓的大小上,而於金奈米顆粒外包覆C18硫醇分子的記憶元件,須設定較高的設限電流始能穩定轉換至低電阻態,但在低電阻態時卻觀察到電流擾動與衰退現象,此特徵與被金奈米顆粒捕捉的電子,其相互間的庫倫排斥(Coulomb repulsion)作用有關。
    因poly(N-vinylcarbazole)(PVK)高分子在化學結構上,沒有-OH或是-COOH等親水基團(hydrophilic groups),相對於8HQ有較佳之抗水氧的能力。因此第二階段的主體材料改以摻雜金奈米顆粒之PVK高分子薄膜,作為記憶元件之主動層。而於改變“PVK-Au NPs”系統中金奈米顆粒添加量(重量比Au NPs/PVK=0.000,0.083 和0.200)的實驗發現,不論金奈米顆粒添加量為何,此三種元件皆具記憶元件高-低電阻雙穩態的表現;然而於低電阻態記憶保持(retention)時間的量測中,只有Au NPs/PVK=0.083的記憶元件於量測時間內保持穩定電流值。從電容-頻率(capacitance-frequency,C-f)特性曲線量測可發現,此三種元件於高-低電阻態皆呈現相同的負電容特徵,此表示載子的傳輸行為是由PVK高分子基質所主導。
    第三階段則藉由變溫電流-電壓曲線的量測發現,Au NPs/PVK=0.083(重量比)的記憶元件可運作於154 oC之大氣環境下,表現絕佳的熱穩定性。而且元件於高電阻態的電流傳導主要為蕭特基發射(Schottky emission),而於低電阻態為歐姆(Ohmic)傳導機制。從電流傳導與溫度的相依性可發現,高電阻態之蕭特基發射傳導行為與金屬(Al or Au)-PVK接面energy-band offsets相關。而電阻轉換行為與PVK在電場施加下,因電洞濃度改變(亦即Fermi level位置改變)而造成空乏區寬度的變化有關。
    第四階段則是於元件插入poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS)高分子薄膜,製作成Al/ PVK:Au NPs/PEDOT-PSS/Al電阻式記憶體,可於1 V電壓下得到約5×109超高的電流比,且此元件相對於只含PVK:Au NPs主動層的記憶元件,有相同的臨界電壓(Vth)與相對較小的臨界電壓偏移。而於改變PVK:Au NPs主動層厚度(120和360 nm)的實驗結果亦證實高分子記憶元件之高低電阻態電流比的調變,不能單純只靠增加高分子主動層的厚度。

    Nonvolatile memory devices are essential to almost all consumer electronic products. Among the emerging memory devices, resistance random access memories (RRAMs) have several advantages, such as high density, low cost, low power dissipation, and nonvolatile property, which result in a great amount of attention. Nevertheless, RRAMs have not been fully commercialized yet because the resistive switching mechanisms are still controversial up to now.
    In this study, the characterization and operation of nonvolatile polymer-based resistive memory devices using a spin-coated polymer film containing gold nanoparticles (Au NPs) capped with alkanethiols as the active layer are systematically investigated. The polymer thin film basically serves as the matrix and electron donor, while Au NPs act as the electron acceptors. The “organic+inorganic” hybrid memory devices are fabricated as the metal (Al)/active layer/metal (Al) structure to investigate the correlation between electrical characters (I-V characteristics,Retention test,C-f curves) and resistive switching behaviors to acquire further insight into the resistive switching mechanism and improve the functionality of the memory devices.
    The thesis is divided into four phases; the first phase is to investigate how the length of the molecules which encapsulates Au NPs affects the device performance in terms of ON/OFF current ratio, turn-on voltage, retention time, etc. Electrical bistability is demonstrated in a polymer memory device using polystyrene (PS) containing organic conjugated compound 8-hydroxyquinoline (8HQ) and Au NPs capped with different alkanethiol of carbon chain lengths (1-octanethiol (C8), 1-dodecanethiol (C12), and 1-octadecanethiol (C18)) as the active layer. The threshold voltages (Vth) of thiol-derivatized Au NPs based organic memory devices are almost the same. Au NPs capped with C18 based memory device with a higher current compliance setting (1 mA) shows current fluctuation and degradation at the low-resistance state. This feature is related to charging and discharging of Au NPs because of the Coulomb repulsion between electrons confined in nanocrystals.
    Poly(N-vinylcarbazole) (PVK) is more resistant to moisture and oxygen than other organic materials (such as 8HQ blended into polystyrene matrix) for nonvolatile memory application owing to the absence of hydrophilic groups. Therefore, the host material in the second phase are changed to PVK incorporated with C12 capped Au NPs with various weight ratios between PVK and Au NPs (zero, 0.083, and 0.200). Electrical bistability is demonstrated for all three PVK-based devices, regardless of Au-NP ratios. However, good current stability is only obtained for the Au NPs:PVK=0.083:1 device. Capacitance-frequency (C-f) curves present the comparable negative capacitance feature for all three devices in both low-resistance state (LRS, “ON”) and high-resistance state (HRS, “OFF”), indicating that the carrier transport is dominated by the PVK matrix.
    In the third phase, the electrical conduction measurement at various temperatures reveals that Au NPs/PVK=0.083 memory device can be programmed and exhibits excellent thermal stability up to 154 oC in ambient atmosphere. The current conduction is dominated by Schottky emission at HRS and exhibits Ohmic behavior at LRS. The dependence of the current conduction on temperature reveals the connection between the conduction character and the energy band offsets at the metal (Al or Au)-PVK junctions. In addition, the resistive switching is correlated with the width of depletion region in PVK, which varies with the change of hole carrier concentration upon applying electrical field.
    In the fourth phase, an ultrahigh ON/OFF current ratio of 5×109 at 1 V is demonstrated for the Al/PVK:Au NPs/PEDOT-PSS/Al resistive memory device without magnifying the threshold voltage and improves the consistency of threshold voltage. The investigation into different thickness (120 and 360 nm) of PVK:Au NPs active layer also suggests that the modulation of ON/OFF current ratio for the memory device can not be achieved by simply varying the thickness of the polymer active layer itself.

    第1章 前言與研究目的 1 1-1 前言 1 1-2 研究目的 6 第2章 理論基礎 8 2-1 新型非揮發性記憶體簡介 8 2-1.1 鐵電隨機存取記憶體(FeRAM) 8 2-1.2 相變隨機存取記憶體(PCRAM) 9 2-1.3 磁阻隨機存取記憶體(MRAM) 10 2-1.4 電阻式隨機存取記憶體(RRAM) 11 2-2 有機材料之電阻式隨機存取記憶體(RRAM) 13 2-3 電阻轉換I-V曲線特徵 17 2-3.1 電流設限(current compliance, c.c.)之意義 17 2-3.2 電阻轉換的極性(polarity)特徵 19 2-4 電阻轉換機制 21 2-4.1 燈絲理論(filament theory) 22 2-4.2 空間電荷和捕捉(space charge and trap) 27 2-4.3 構造改變(conformation change) 29 2-4.4 電荷轉移(charge transfer,CT) 30 2-4.5 蕭特基能障改變(Schottky barrier modification) 34 2-5 電流傳導機制 37 2-5.1 穿遂(Tunneling) 37 2-5.2 熱離子發射(Thermionic emission)或蕭特基發射(Schottky emission) 38 2-5.3 夫倫克爾-普爾發射(Frenkel-Poole emission) 39 2-5.4 歐姆效應(Ohmic) 39 2-5.5 離子傳導(Ionic conduction) 40 2-5.6 空間電荷限制電流(Space-charge-limited current, SCLC) 41 第3章 實驗方法和步驟 44 3-1 實驗材料 44 3-1.1 基板(Substrate) 44 3-1.2 實驗相關耗材 44 3-2 電阻式記憶體元件製備 47 3-2.1 基板清洗 47 3-2.2 金奈米顆粒之合成 47 3-2.3 金屬上下電極薄膜製備 48 3-2.4 主動層旋塗 49 3-2.5 電洞傳輸層旋塗 49 3-3 實驗設備 50 3-3.1 旋轉塗佈機(Spin coater) 50 3-3.2 氧電漿處理系統(O2 plasma treatment system) 50 3-3.3 電子束蒸鍍機(E-beam evaporation system) 51 3-4 實驗流程 52 3-5 分析儀器 55 3-5.1 紫外光-可見光光譜儀(UV/Vis spectrophotometer) 55 3-5.2 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 55 3-5.3 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 56 3-5.4 表面粗度儀(α-step) 56 3-5.5 半導體參數分析儀(Precision Semiconductor Parameter Analyzer) 57 3-5.6 電感、電容和電阻計量儀(LCR meter) 58 第4章 結果與討論 61 4-1 金奈米顆粒的最佳化 61 4-1.1 不同碳鏈長度硫醇(RSH)分子包覆之金奈米顆粒 61 4-1.2 調控四氯金酸鹽類對硫醇(RSH)分子的莫耳比例 64 4-2 記憶體效能與金奈米顆粒外所包覆的硫醇分子碳鏈長度之關連性 71 4-2.1 Al/PS+8HQ+Au NPs/Al RRAM元件之電流-電壓(I-V)特徵曲線 71 4-2.2 Al/PS+8HQ+Au NPs/Al RRAM元件之記憶保持(retention)時間(I-t)量測 75 4-2.3 Al/PS+8HQ+Au NPs/Al RRAM元件之電阻轉換機制,及記憶體效能與硫醇分子碳鏈長度之關連性 78 4-3 金奈米顆粒於高分子薄膜記憶體內所扮演的角色 81 4-3.1 Al/Au NPs:PVK/Al RRAM元件之電流-電壓(I-V)特徵曲線 81 4-3.2 Al/Au NPs:PVK/Al RRAM元件之記憶保持(retention)時間(I-t)量測 83 4-3.3 TEM顯微結構觀察 85 4-3.4 Al/Au NPs:PVK/Al RRAM元件之電容-頻率(C-f)曲線量測 87 4-3.5 金奈米顆粒於Al/Au NPs:PVK/Al RRAM元件中對載子傳輸之影響 89 4-4 攙雜金奈米顆粒之高分子薄膜記憶體電阻轉換機制 92 4-4.1 Al/PVK: Au NPs/Al RRAM元件之電流-電壓(I-V)特徵曲線 92 4-4.2 Al/PVK: Au NPs/Al RRAM元件之高溫電流-電壓(I-V)特徵和記憶保持(retention)時間(I-t)量測 95 4-4.3 Al/PVK: Au NPs/Al RRAM元件之蕭特基能障(Schottky barrier)與電阻轉換機制的關連性 98 4-5 調變高分子薄膜記憶體之記憶體效能 104 4-5.1 Al/PVK:Au NPs (360 nm)/Al RRAM元件之電流-電壓(I-V)特徵曲線 104 4-5.2 Al/PVK:Au NPs (120 nm)/PEDOT-PSS/Al RRAM元件之電流-電壓(I-V)特徵曲線 107 4-5.3 PVK:Au NPs (360 nm)與PVK:Au NPs (120 nm)/PEDOT-PSS RRAM元件之記憶保持(retention)時間(I-t)量測 109 4-5.4 Al/PVK:Au NPs (120 nm)/PEDOT-PSS/Al RRAM元件之高溫電流-電壓(I-V)特徵曲線 111 4-5.5 Al/PVK:Au NPs (120 nm)/PEDOT-PSS/Al RRAM元件之電阻轉換機制 112 第5章 總結 114 第6章 參考文獻 116

    1. The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, Brussels, San Francisco, Hsinchu, 2009), Emerging Research Devices Section, p. 5.
    2. The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, Brussels, San Francisco, Hsinchu, 2009), Emerging Research Materials Section, p. 18.
    3. K. Galatsis, K. Wang, Y. Botros, Y. Yang, Y.-H. Xie, J. F. Stoddart, R. B. Kaner, C. Ozkan, J. L. Liu, M. Ozkan, C. W. Zhou, and K. W. Kim, "Emerging memory devices", IEEE Circuits Syst. Mag. 22, 12 (2006).
    4. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, "Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface", Appl. Phys. Lett. 83, 957 (2003).
    5. X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, "Reproducible unipolar resistance switching in stoichiometric ZrO2 films", Appl. Phys. Lett. 90, 183507 (2007).
    6. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, "Programmable polymer thin film and non-volatile memory device", Nature Mater. 3, 918 (2004).
    7. H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, "Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes", Adv. Mater. 21, 79 (2009).
    8. K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, and J. Jang, "Organic bistable memory device using MoO3 nanocrystal as a charge trapping center", Org. Electron. 10, 48 (2009).
    9. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, "Top-interface-controlled switching and fatigue endurance of (Pb,La)(Zr,Ti)O3 ferroelectric capacitors", Appl. Phys. Lett. 74, 3552 (1999).
    10. W. Wu, K. H. Wong, C. L. Choy, and Y. H. Zhang, "Top-interface-controlled fatigue of epitaxial Pb(Zr0.52Ti0.48)O3 ferroelectric thin films on La0.7Sr0.3MnO3 electrodes", Appl. Phys. Lett. 77, 3441 (2000).
    11. A. Redaelli, D. Ielmini, A. L. Lacaita, F. Pellizzer, A. Pirovano, and R. Bez, "Impact of crystallization statistics on data retention for phase change memories", Int. IEDM Tech. Dig., 742 (2005).
    12. H.-B. Kang, Y.-J. Park, J.-J. Lee, J.-H. Ahn, M.-Y. Sung, and Y.-K. Sung, "Cell Signal Distribution Characteristics For High Density FeRAM", J. Semicond. Technol. Sci. 4, 222 (2004).
    13. G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, "Status and outlook of emerging nonvolatile memory technologies", Int. IEDM Tech. Dig., 567 (2004).
    14. T. Kishi, T. Ueda, H. Aikawa, T. Kajiyama, K. Shimura, Y. Fukuzumi, Y. Shimizu, Y. Asao, H. Yoda, and S. Tahara, "Effect of novel yoke wire in low-power MRAM applications", J. Magn. Magn. Mater. 272-276, 1939 (2004).
    15. T. Mikolajick, M. Salinga, M. Kund, and T. Kever, "Nonvolatile Memory Concepts Based on Resistive Switching in Inorganic Materials", Adv. Eng. Mater. 11, 235 (2009).
    16. S.-E. Ahn, M.-J. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D.-S. Suh, D.-C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin, I.-K. Yoo, J.-H. Lee, J.-B. Park, I.-G. Baek, and B. H. Park, "Write Current Reduction in Transition Metal Oxide Based Resistance-Change Memory", Adv. Mater. 20, 924 (2008).
    17. K. Kinoshtia, T. Okutan, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi, and S. Kishida, "Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films", Appl. Phys. Lett. 96, 143505 (2010).
    18. S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C. U. Jung, S. Seo, M.-J. Lee, and T. W. Noh, "Random Circuit Breaker Network Model for Unipolar Resistance Switching", Adv. Mater. 20, 1154 (2008).
    19. J. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. D. Kilcoyne, G. Medeiros-Ribeiro, and R. S. Williams, "Direct Identifi cation of the Conducting Channels in a Functioning Memristive Device", Adv. Mater. 22, 3573 (2010).
    20. Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Lett. 9, 1636 (2009).
    21. M.-C. Chen, T.-C. Chang, C-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, S. M. Sze, and M.-J. Tsai, "Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films", Appl. Phys. Lett. 96, 262110 (2010).
    22. Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, "Resistive switching memory effect of ZrO2 films with Zr+ implanted", Appl. Phys. Lett. 92, 012117 (2008).
    23. L. Goux, Y.-Y Chen, L. Pantisano, X.-P. Wang, G. Groeseneken, M. Jurczak, and D. J. Wouters, "On the Gradual Unipolar and Bipolar Resistive Switching of TiNHfO2Pt Memory Systems", Electrochem. Solid State Lett. 13, G54 (2010).
    24. C. H. Chen, T. C. Chang, I. H. Liao, P. B. Xi, J. Hsieh, J. Chen, T. Huang, S. M. Sze, U. S. Chen, and J. R. Chen, "Tungsten oxide/tungsten nanocrystals for nonvolatile memory devices", Appl. Phys. Lett. 92, 013114 (2008).
    25. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, "Electronic transport in Ta2O5 resistive switch", Appl. Phys. Lett. 91, 092110 (2007).
    26. J. Yoon, H. Choi, D. Lee, J.-B. Park, J. Lee, D.-J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, "Excellent Switching Uniformity of Cu-Doped MoOx/GdOx Bilayer for Nonvolatile Memory Applications", IEEE Electron Device Lett. 30, 457 (2009).
    27. Y. S. Park, S. Y. Lee, S. M. Yoon, S. W. Jung, B. G. Yu, S. J. Lee, and S. G. Yoon, "Nonvolatile programmable metallization cell memory switching element based on Ag-doped SbTe solid electrolyte", Appl. Phys. Lett. 91, 162107 (2007).
    28. Z.-M. Liao, C. Hou, H.-Z. Zhang, D.-S. Wang, and D-P. Yu, "Evolution of resistive switching over bias duration of single Ag2S nanowires", Appl. Phys. Lett. 96, 203109 (2010).
    29. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, "Nanometer-scale switches using copper sulfide", Appl. Phys. Lett. 82, 3032 (2003).
    30. Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind, "Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals", Appl. Phys. Lett. 78, 3738 (2001).
    31. J.-W. Park, M. K. Yang, and J.-K. Lee, "Electrode Dependence of Bipolar Resistive Switching in SrZrO3:Cr Perovskite Film-Based Memory Devices", Electrochem. Solid State Lett. 11, H226 (2008).
    32. R. Oligschlaeger, R. Waser, R. Meyer, S. Karthäuser, and R. Dittmann, "Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films", Appl. Phys. Lett. 88, 042901 (2006).
    33. L. P. Ma, J. Liu, and Y. Yang, "Organic electrical bistable devices and rewritable memory cells", Appl. Phys. Lett. 80, 2997 (2002).
    34. M. Lauters, B. McCarthy, D. Sarid, and G. E. Jabbour, "Nonvolatile multilevel conductance and memory effects in organic thin films", Appl. Phys. Lett. 87, 231105 (2005).
    35. J. Ouyang, C. W. Chu, R. J. H. Tseng, A. Prakash, and Y. Yang, "Organic memory device fabricated through solution processing", Proc. IEEE 93 (2005).
    36. Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang, and K.-G. Neoh, "Non-Volatile Polymer Memory Device Based on a Novel Copolymer of N-Vinylcarbazole and Eu-Complexed Vinylbenzoate", Adv. Mater. 17, 455 (2005).
    37. Q.-D. Ling, E.-T. Kang, K.-G. Neoh, Y. Chen, X.-D. Zhuang, C. Zhu, and D. S. H. Chan, "Thermally stable polymer memory devices based on a pi-conjugated triad", Appl. Phys. Lett. 92, 143302 (2008).
    38. M.-J. Lee, S. I. Kim, C. B. Lee, H. Yin, S.-E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, and Y. Park, "Low-Temperature-Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High-Density Non-volatile Memory", Adv. Funct. Mater. 18, 1 (2008).
    39. H. Carchano, R. Lacoste, and Y. Segui, "Bistable Electrical Switching in Polymer Thin Films", Appl. Phys. Lett. 19, 414 (1971).
    40. J. C. Scott, and L. D. Bozano, "Nonvolatile Memory Elements Based on Organic Materials", Adv. Mater. 19, 1452 (2007).
    41. H. K. Henisch, and W. R. Smith, "Switching in organic polymer films ", Appl. Phys. Lett. 24, 589 (1974).
    42. Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J. S. Chen, "Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications", Appl. Phys. Lett. 87, 122101 (2005).
    43. Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J. S. Chen, "Charge-Transport Characteristics in Bistable Resistive Poly(N-Vinylcarbazole) Films", IEEE Electron Device Lett. 27, 451 (2006).
    44. X. Liu, Z. Ji, D. Tu, L. Shang, J. Liu, M. Liu, and C. Xie, "Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): Polystyrenesulfonate thin film", Org. Electron. 10, 1191 (2009).
    45. H. Ha, and O. Kim, "Electrode-Material-Dependent Switching Characteristics of Organic Nonvolatile Memory Devices Based on Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) Film", IEEE Electron Device Lett. 31, 368 (2010).
    46. Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, "Reproducible and controllable organic resistive memory based on Al/poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure", Appl. Phys. Lett. 97, 253301 (2010).
    47. H. S. Majumdar, A. Bandyopadhyay, A. Bolognesi, and A. J. Pal, "Memory device applications of a conjugated polymer: Role of space charges", J. Appl. Phys. 91, 2433 (2002).
    48. Q. Liu, K. Jiang, L. Wang, Y. Wen, J. Wang, Y. Ma, and Y. Song, "Distinct electronic switching behaviors of triphenylamine-containing polyimide memories with different bottom electrodes", Appl. Phys. Lett. 96, 213305 (2010).
    49. D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, and G. Haas, "Metal/organic/metal bistable memory devices", Appl. Phys. Lett. 85, 5763 (2004).
    50. A. K. Mahapatro, R. Agrawal, and S. Ghosh, "Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3)", J. Appl. Phys. 96, 3583 (2004).
    51. M. Terai, K. Fujita, and T. Tsutsui, "Electrical Bistability of Organic Thin-Film Device Using Ag Electrode", Jpn. J. Appl. Phys. 45, 3754 (2006).
    52. J. Billen, S. Steudel, R. Müller, J. Genoe, and P. Heremans, "A comprehensive model for bipolar electrical switching of CuTCNQ memories", Appl. Phys. Lett. 91, 263507 (2007).
    53. C. W. Chu, J. Ouyang, J.-H. Tseng, and Y. Yang, "Organic Donor-Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices", Adv. Mater. 17, 1440 (2005).
    54. Ju.H. Krieger, S.V. Trubin, S.B. Vaschenko, and N.F. Yudanov, "Molecular analogue memory cell based on electrical switching and memory in molecular thin films", Synth. Met. 122, 199 (2001).
    55. F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, "Electronic Memory Effects in a Sexithiophene-Poly(ethylene oxide) Block Copolymer Doped with NaCl. Combined Diode and Resistive Switching Behavior", Chem. Mater. 18, 2707 (2006).
    56. L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, and J. C. Scott, "Organic Materials and Thin-Film Structures for Cross-Point Memory Cells Based on Trapping in Metallic Nanoparticles", Adv. Funct. Mater. 15, 1933 (2005).
    57. T.-Y. Chang, Y.-W. Cheng, and P.-T. Lee, "Electrical characteristics of an organic bistable device using an Al/Alq3/nanostructured MoO3 /Alq3/p+-Si structure", Appl. Phys. Lett. 96, 043309 (2010).
    58. A. Prakash, J. Ouyang, J.-L. Lin, and Y. Yang, "Polymer memory device based on conjugated polymer and gold nanoparticles", J. Appl. Phys. 100, 054309 (2006).
    59. Y. Song, Q. D. Ling, S. L. Lim, E. Y. H. Teo, Y. P. Tan, L. Li, E. T. Kang, D. S. H. Chan, and C. Zhu, "Electrically Bistable Thin-Film Device Based on PVK and GNPs Polymer Material", IEEE Electron Device Lett. 28, 107 (2007).
    60. T. Kondo, S. M. Lee, M. Malicki, B. Domercq, S. R. Marder, and B. Kippelen, "A Nonvolatile Organic Memory Device Using ITO Surfaces Modified by Ag-Nanodots", Adv. Funct. Mater. 18, 1112 (2008).
    61. D.-I. Son, D.-H. Park, S.-Y. Ie, W.-K. Choi, J.-W. Choi, F. Li, and T.-W. Kim, "Single active-layer structured dual-function devices using hybrid polymer–quantum dots", Nanotechnology 19, 395201 (2008).
    62. B. Cho, T.-W. Kim, M. Choe, G. Wang, S. Song, and T. Lee, "Unipolar nonvolatile memory devices with composites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles", Org. Electron. 10, 473 (2009).
    63. Q.-D. Ling, S.-L. Lim, Y. Song, C.-X. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, "Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin Film of Poly(N-vinylcarbazole) with Covalently Bonded C60", Langmuir 23, 312 (2007).
    64. B. Cho, T.-W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G.-Y. Jung, and T. Lee, "Rewritable Switching of One Diode–One Resistor Nonvolatile Organic Memory Devices", Adv. Funct. Mater. 22, 1228 (2010).
    65. Y. Ji, B. Cho, S. Song, T. W. Kim, M. Choe, Y. H. Kahng, and T. Lee, "Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate", Adv. Mater. 22, 3071 (22).
    66. J. Chen, and D. Ma, "Performance improvement by charge trapping of doping fluorescent dyes in organic memory devices", J. Appl. Phys. 100, 034512 (2006).
    67. S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, "Memory effect from charge trapping in layered organic structures", Appl. Phys. Lett. 85, 4666 (2004).
    68. L. F. Pender, and R. J. Fleming, "Memory switching in glow discharge polymerized thin films", J. Appl. Phys. 46, 3426 (1975).
    69. "Agilent 4156C Precision Semiconductor Parameter Analyzer User Guide", from Agilent Technologies.
    70. W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, "Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2", IEEE Electron Device Lett. 29, 434 (2008).
    71. R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater. 21, 2632 (2009).
    72. I. H. Inoue, M. J. Rozenberg, S. Yasuda, M. J. Sanchez, M. Yamazaki, T. Manago, H. Akinaga, H. Takagi, H. Akoh, and Y. Tokura, "Strong electron correlation effects in non-volatile electronic memory devices", IEEE. Non-Volatile Memory Technology Symposium (Dallas, Texas, 2005), p. 131.
    73. T. Becker, C. Streng, Y. Luo, V. Moshnyaga, B. Damaschke, N. Shannon, and K. Samwer, "Intrinsic Inhomogeneities in Manganite Thin Films Investigated with Scanning Tunneling Spectroscopy", Phys. Rev. Lett. 89, 237203-237201 (2002).
    74. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, "Localized Metallic Conductivity and Self-Healing during Thermal Reduction of SrTiO3", Phys. Rev. Lett. 88, 075508 (2002).
    75. H. J. Hovel, and J. J. Urgell, "Switching and Memory Characteristics of ZnSe ‐ Ge Heterojunctions", J. Appl. Phys. 42, 5076 (1971).
    76. Y. Segui, B. Ai, and H. Carchano, "Switching in polystyrene films: Transition from on to off state", J. Appl. Phys. 47, 140 (1976).
    77. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, "Polymer electronic memories: Materials, devices and mechanisms", Prog. Polym. Sci. 23, 917 (2008).
    78. R. Waser, and M. Aono, "Nanoionics-based resistive switching memories", Nat. Mater. 6, 833 (2007).
    79. C.-H. Tu, Y.-S. Lai, and D.-L. Kwong, "Memory Effect in the Current-Voltage Characteristic of 8-Hydroquinoline Aluminum Salt Films", IEEE Electron Device Lett. 27, 354 (2006).
    80. K. Kinoshtia, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi, and S. Kishida, "Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films", Appl. Phys. Lett. 96, 143505 (2010).
    81. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, "Current switching of resistive states inmagnetoresistive manganites", Nature 388, 50 (1997).
    82. D. S. Kim, Y. H. Kim, C. E. Lee, and Y. T. Kim, "Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: Evidence for a Mott transition", Phys. Rev. B 74, 174430 (2006).
    83. G. I. Meijer, U. Staub, M. Janousch, S. L. Johnson, B. Delley, and T. Neisius, "Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3", Phys. Rev. B 72, 155102 (2005).
    84. M. A. Lampert, and P. Mark, "Current Injection in Solids", (Academic, New York, 1970), p. 14.
    85. Q.-D. Ling, Y. Song, S.-L. Lim, E. Y.-H. Teo, Y.-P. Tan, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang, and K.-G. Neoh, "A Dynamic Random Access Memory Based on a Conjugated Copolymer Containing Electron-Donor and -Acceptor Moieties", Angew. Chem. Int. Ed. 45, 2947 (2006).
    86. H.-T. Lin, Z. Pei, and Y.-J. Chan, "Carrier Transport Mechanism in a Nanoparticle-Incorporated Organic Bistable Memory Device", IEEE Electron Device Lett. 28, 569 (2007).
    87. T.-W. Kim, S.-H. Oh, H. Choi, G. Wang, H. Hwang, D.-Y. Kim, and T. Lee, "Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices", Appl. Phys. Lett. 92, 253308 (2008).
    88. A. Bandyopadhyay, and A. J. Pal, "Tuning of Organic Reversible Switching via Self-Assembled Supramolecular Structure", Adv. Mater. 15, 1949 (2003).
    89. A. Bandyopadhyay, and A. J. Pal, "Multilevel conductivity and conductance switching in supramolecular structures of an organic molecule", Appl. Phys. Lett. 84, 999 (2004).
    90. A. Bandyopadhyay, and A. J. Pal, "Key to design functional organic molecules for binary operation with large conductance switching", Chem. Phys. Lett. 371, 86 (2003).
    91. A. Bandyopadhyay, and A. J. Pal, "Memory-Switching Phenomenon in Acceptor-Rich Organic Molecules: Impedance Spectroscopic Studies", J. Phys. Chem. B 109, 6084 (2005).
    92. B. Mukherjee, and A. J. Pal, "Dielectric properties of (multilevel) switching devices based on ultrathin organic films", Chem. Phys. Lett. 401, 410 (2005).
    93. R. S. Potember, T. O. Poehler, and D. O. Cowan, "Electrical switching and memory phenomena in Cu‐TCNQ thin films", Appl. Phys. Lett. 34, 405 (1979).
    94. S. Roth, H. Bleier, and W. Pukacki, "Charge Transport in Conducting Polymers", Faraday Discuss. Chem. Soc. 88, 223 (1989).
    95. R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, "Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory", Nano Lett. 5, 1077 (2005).
    96. B. Mukherjee, and M. Mukherjee, "Nonvolatile memory device based on Ag nanoparticle: Characteristics improvement", Appl. Phys. Lett. 94, 173510 (2009).
    97. A. Tang, F. Teng, L. Qian, Y. Hou, and Y. Wang, "Electrical bistability of copper (I) sulfide nanocrystals blending with a semiconducting polymer", Appl. Phys. Lett. 95, 143115 (2009).
    98. Y. Ma, X. Cao, G. Li, Y. Wen, Y. Yang, J. Wang, S. Du, L. Yang, H. Gao, and Y. Song, "Improving the ON/OFF Ratio and Reversibility of Recording by Rational Structural Arrangement of Donor–Acceptor Molecules", Adv. Funct. Mater. 20, 803 (2010).
    99. R. J. Tseng, C. O. Baker, B. Shedd, J. Huang, R. B. Kaner, J. Ouyang, and Y. Yang, "Charge transfer effect in the polyaniline-gold nanoparticle memory system", Appl. Phys. Lett. 90, 053101 (2007).
    100. G. Liu, X. Zhuang, Y. Chen, B. Zhang, J. Zhu, C.-X. Zhu, K.-G. Neoh, and E.-T. Kang, "Bistable electrical switching and electronic memory effect in a solutionprocessable graphene oxide-donor polymer complex", Appl. Phys. Lett. 95, 253301 (2009).
    101. A. Moliton, and Roger C Hiorns, "Featured Article Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics", Polym Int 53, 1397 (2004).
    102. D. A. Neamen, "Semiconductor Physics and Devices: Basic Principles", Third ed. (McGraw-Hill, New York, 2003), p. 115-128.
    103. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface", Appl. Phys. Lett. 85, 4073 (2004).
    104. A. Sawa, "Resistive switching in transition metal oxides", Mater. Today 11, 28 (2008).
    105. S. M. Sze, "Physics of Semiconductor Devices", second ed. (Wiley, New York, 1981), p. 403.
    106. E.H.Rhoderick, and R.H.Williams, "Metal-Semiconductor contacts", Second ed. (Oxford Science Publications, New York, 1988), p. 15.
    107. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System", J. Chem. Soc., Chem. Commun., 801 (1994).
    108. M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, "Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size", Langmuir 14, 17 (1998).
    109. "Agilent 4284A LCR Meter User Guide", from Agilent Technologies.
    110. R. S. Ingram, M. J. Hostetler, and R. W. Murray, "Poly-hetero-w-functionalized Alkanethiolate-Stabilized Gold Cluster Compounds", J. Am. Chem. Soc. 119, 9175 (1997).
    111. T. Shimizu, T. Teranishi, S. Hasegawa, and M. Miyake, "Size Evolution of Alkanethiol-Protected Gold Nanoparticles by Heat Treatment in the Solid State", J. Phys. Chem. B 107, 2719 (2003).
    112. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, "Preparation and Characterization of Au Colloid Monolayers", Anal. Chem. 67, 735 (1995).
    113. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen", Ann. Phys. 25, 377 (1908).
    114. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, "Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters", J. Phys. Chem. B 104, 564 (2000).
    115. M. C. Daniel, and D. Astruc, "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology", Chem. Rev. 104, 293 (2004).
    116. H. Zhang, Y. Yasutake, Y. Shichibu, T. Teranishi, and Y. Majima, "Tunneling resistance of double-barrier tunneling structures with an alkanethiol-protected Au nanoparticle", Phys. Rev. B 72, 205441 (2005).
    117. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, "A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal", Nature (London) 389, 699 (1997).
    118. O. Winkler, F. Merget, M. Heuser, B. Hadam, M. Baus, B. Spangenberg, and H. Kurz, "Concept of floating-dot memory transistors on silicon-on-insulator substrate", Microelectron. Eng. 61-62, 497 (2002).
    119. B. Park, K. Cho, H. Kim, and S. Kim, "Capacitance characteristics of MOS capacitors embedded with colloidally synthesized gold nanoparticles", Semicond. Sci. Technol. 21, 975 (2006).
    120. S. Berleb, and W. Brütting, "Dispersive Electron Transport in tris(8-Hydroxyquinoline) Aluminum (Alq3) Probed by Impedance Spectroscopy", Phys. Rev. Lett. 89, 286601 (2002).
    121. H. C. F. Martens, H. B. Brom, and P. W. M. Blom, "Frequency-dependent electrical response of holes in poly(p-phenylene vinylene)", Phys. Rev. B 60, R8489 (1999).
    122. G. Safoula, K. Napo, J. C. Bernede, S. Touihri, and K. Alimi, "Electrical conductivity of halogen doped poly(N-vinylcarbazole) thin films", Eur. Polym. J. 37, 843 (2001).
    123. Y. C. Shin, J. Song, K. M. Kim, B. J. Choi, S. Choi, H. J. Lee, G. H. Kim, T. Eom, and C. S. Hwang, "(In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array", Appl. Phys. Lett. 92, 162904 (2008).
    124. B. Masenelli, D. Berner, M. N. Bussac, F. Nuesch, and L. Zuppiroli, "Simulation of charge injection enhancements in organic light-emitting diodes", Appl. Phys. Lett. 79, 4438 (2001).
    125. Y. Kawamura, S. Yanagida, and S. R. Forrest, "Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers", J. Appl. Phys. 92, 87 (2002).
    126. V. V. Afanas'ev, M. Houssa, A. Stesmans, and M. M. Heyns, "Band alignments in metal--oxide--silicon structures with atomic-layer deposited Al2O3 and ZrO2", J. Appl. Phys. 91, 3079 (2002).
    127. D. A. Neamen, "Semiconductor Physics and Devices: Basic Principles", Third ed. (McGraw-Hill, New York, 2003), p. 326.
    128. P. Y. Lai, and J. S. Chen, "Influence of electrical field dependent depletion at metal-polymer junctions on resistive switching of poly(N-vinylcarbazole)(PVK)-based memory devices", Org. Electron. 10, 1590 (2009).
    129. P.-J. Chia, L.-L. Chua, S. Sivaramakrishnan, J.-M. Zhuo, L.-H. Zhao, W.-S. Sim, Y.-C. Yeo, and P. K-H. Ho, "Injection-induced De-doping in a Conducting Polymer during Device Operation: Asymmetry in the Hole Injection and Extraction Rates", Adv. Mater. 19, 4202 (2007).
    130. S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, "Highly Efficient Tandem Polymer Photovoltaic Cells", Adv. Mater. 22, 380 (2010).
    131. J.-H. Choi, S. N. Das, and J.-M. Myoun, "Controllable resistance switching behavior of NiO/SiO2 double layers for nonvolatile memory applications", Appl. Phys. Lett. 95, 62105 (2009).
    132. S. Möller, S. R. Forrest, C. Perlov, W. Jackson, and C. Taussig, "Electrochromic conductive polymer fuses for hybrid organic/inorganicsemiconductor memories", J. Appl. Phys. 94, 7811 (2003).
    133. T.Y. Kim, M. Suh, S. J. Kwon, T. H. Lee, J. E. Kim, Y. J. Lee, J. H. Kim, M.P. Hong, and K. S. Suh, "Poly(3,4-ethylenedioxythiophene) Derived from Poly(ionic liquid) for the Use as Hole-Injecting Material in Organic Light-Emitting Diodes", Macromol. Rapid Commun. 30, 1477 (2009).

    下載圖示 校內:2014-01-26公開
    校外:2016-01-26公開
    QR CODE