| 研究生: |
詹宏基 Chan, Hung-Chi |
|---|---|
| 論文名稱: |
含損傷內涵時間黏塑性理論對Sn/3.9Ag/0.6Cu銲錫不同應變率下疲勞初始壽命預估 Prediction of Fatigue Initiation Life with Strain Rate Effect for Sn/3.9Ag/0.6Cu Solder Using the Damage Coupled Endochronic Viscoplasticity Theory |
| 指導教授: |
李超飛
Lee, C. F. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | Sn/3.9Ag/0.6Cu 、內涵損傷演化方程式 、Ramp time 、Coffin-Manson修正式 、含損傷內涵時間黏塑性理論 、疲勞初始壽命 、Frequency Coffin-Manson修正式 、臨界循環損傷因子 |
| 外文關鍵詞: | Frequency Modified Coffin-Manson, Fatigue initiation life, Endochronic viscoplasticity with damage, Modified Coffin-Manson relationship, Critical cyclic damage, Ramp time, Evolution equation of intrinsic damage, Sn/3.9Ag/0.6Cusolder |
| 相關次數: | 點閱:242 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文依Wei等人對Sn/3.9Ag/0.6Cu銲錫材料於溫度 之不同應變率之循環穩態應力-應變遲滯曲線實驗數據來定義內涵時間黏塑性理論之材料參數及應變率敏感函數 。
本文對循環損傷因子以循環最大應力的下降率來定義,並由定應變振幅 - 曲線實驗數據及Percolation理論來決定臨界循環損傷因子 。以含損傷內涵時間黏塑性理論,模擬Sn/3.9Ag/0.6Cu銲錫於定應變範圍0.8%之循環損傷之應力-應變滯遲曲線,與實驗在各損傷因子之應力振幅值皆相當接近。並利用Lee and Chen所提議之內涵損傷演化方程式,配合Zeng等人對Sn/3.8Ag/0.7Cu銲錫材料於298 下應變率 、 之 曲線,藉以推導出Sn/3.9Ag/0.6Cu銲錫材料單軸拉伸下循環損傷與非彈性應變範圍之關係式,並依此建立 關係式;在定義之 下,經由Coffin-Mason修正式計算,所得之值能有效的預測該銲錫於不同應變率下之疲勞初始壽命,進一步比較發現Frequency Modified Conffin-Manson之斜率能有效預測在定應變範圍0.8%下預測值之走勢。
In this paper, the kernel function 、material parameter 、 and the strain rate sensitive function in the Endochronic viscoplasticity were established by using Sn/3.9Ag/0.6Cu experimental cyclically steady hysteresis loops of Wei et. al., in the fixed temperature298K and strain rate( 、 、 、 ).
To define the cyclic damage factor, the reducing rate of maximum cyclic stress was used. The critical cyclic damage could be found by combining experimental vs. data and the Percolation theory. The Endochronic viscoplasticity with damage was used to simulate Sn/3.9Ag/0.6Cu cyclic stress-strain hysteresis loops with damage under strain range 0.8% provided by Wei et. al. in temperature 298K. The results were in very good agreement with stress amplitude data. Employed the evolution equation of intrinsic damage proposed by Lee and Chen and the computed cyclic stress-inelastic strain relation, according to this can established the relational equation ;modified Coffin-Manson relationship( ) was derived and used to predict the data of different strain rate fatigue initiation life very effectively,further compare slope of frequency modified Coffin-Manson and prediction data can find the slope similar the tendency of prediction data at fixed strain range=0.8%.
[1] Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech.,Vol. 22, No.3, pp.181-191, 2006.
[2] Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy,” Journal of Mechanics., Vol. 23, No.4, pp.433-443, 2007.
[3] Lee, C. F. and Lee, Z. H., “Prediction Fatigue Life of Sn/3.8Ag/0.7Cu solder Using Endochronic Cyclic Damage-Coupled Viscoplastic Theory,” will be Published in the J. of Mechanics., Sept.,2008
[4] 李泰廣,“Sn/3.5Ag/0.75Cu銲點試片在循環比例位移路徑下含循環損傷內涵時間黏塑性理論之應用”,成功大學工程科學系碩士畢業論文,2007.
[5] Wei, Y., Lau, K. J., Vianco, P., and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading,” ASME J. Electronic Packaging., Vol. 126, pp. 367-373, 2004.
[6] Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese J. Material Research., Vol. 18, pp. 11-17, 2004.
[7] Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Cyclic softening of the Sn-3.8Ag-0.7Cu Lead-free Solder Alloy with Equiaxed Grain Structure,” Journal Of Electronic Materials., Vol. 34, pp. 62-67, 2005.
[8] Wei, Y., C. L. Chow., Vianco, P., and Fang, E., “Isothermal Fatigue Damage Model for Lead-free Solder,” International J. of Damage Mechanics., Vol. 15,pp.109-120, 2006.
[9] Shang, J. K., Zeng, Q. L., Zhang, L., and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sci : Mater. in Electron., Vol. 18(1-3), pp. 211-227, 2007.
[10] Valanis, K. C., “A Theory of Viscoplasticity Without a Yield Surface Part І. General Theory,” Archives of Mechanics, pp.517-533, 1971.
[11] Valanis, K. C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory,” Archives of Mechanics, Vol. 32, pp.171-191, 1980.
[12] Lee, C.F., J.,“Numerical Method of The Incremental Endochronic Plasticity,” The Chinese Journal of Mechanics, Vol.8, No.3, pp.377-396, 1992.
[13] Stolkarts, V., Keer, L. M., and Fine, M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp.2451-2468, 1999.
[14] Qian, Z., Abhijit, D., and Peter, H., “Viscoplastic Constitutive Properties and Energy-Partitioning Model of Lead-Free Sn/3.9Ag/0.6Cu,” Electronic Components and Technology Conference, pp.1862-1868, 2003.