| 研究生: |
陳盈婷 Chen, Ying-Ting |
|---|---|
| 論文名稱: |
藉由多光子激發光化學作用於三維蛋白質微結構之製作 Fabrication of Three-dimensional Protein Microstructures via Multiphoton Excited Photochemistry |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 非線性多光子激發 、光交聯 、膠原蛋白 |
| 外文關鍵詞: | nonlinear multiphoton excitation, photocrosslinking, collagen |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用超快雷射之非線性多光子激發技術行光交聯(photocrosslinking)反應於蛋白質溶液中,聚合加工出二維與三維生醫材料結構,所使用的加工溶液包含孟加拉玫瑰素(rose Bengal,RB)作為光活化劑(photoactivator),以牛血清白蛋白(bovine serum albumin,BSA)或第一型膠原蛋白(type I collagen)為反應單體。孟加拉玫瑰素經雙光子激發後可有效的產生高活性的單態氧,此單態氧會與蛋白質氨基酸的可氧化端產生反應並形成活化的蛋白質,而該蛋白質將可與另一個蛋白質反應,形成鍵結並完成雙光子交聯作用。該反應機制經由實驗室所發展之超快雷射加工系統,可加工出具有生物相容性(biocompatible)的三維結構。另外也可藉由聲光調變器(acousto-optic modulator,AOM)調控每個加工點雷射光源之脈衝數量,以達到不同聚合程度的灰階加工。論文中也嘗試利用此蛋白聚合結構以物理性方式限制及引導膠原蛋白纖維化方向,並對其纖維化程度利用外加氯化鈣(calcium chloride)方式進一步做些調整,期望使其可均勻分布於結構內;於第一型膠原蛋白實驗中,藉以中和膠原蛋白溶液使孟加拉玫瑰素保有其功能下,成功地直接對膠原蛋白聚合加工出二維大面積結構。這些蛋白質加工結構的研究可擴展應用於複雜細胞外基質(extracellular matrix,ECM)製作與組織工程(tissue engineering)等研究。
In this thesis, nonlinear multiphoton excited technique is utilized to fabricate two-/three-dimensional (2D/3D) structures via photocrosslinking in protein solution. The solution contains photoactivator, rose Bengal (RB), and reactive monomers, bovine serum albumin (BSA) or type I collagen. RB with two-photon excitation can efficiently cause surrounding oxygen into singlet oxygen. The singlet oxygen then reacts with the oxidable species of amino acid and the protein is induced as high activity. Further, this protein reacts with another protein and form a chemical bond. The reaction process by using a home-made femtosecond laser processing system can deliver biocompatible 3D structures. Besides, different gray level laser dose has been adopted to create complex biomaterial structures via laser pulse number modulation for different fabrication regions. The protein fabricated structure is also employed to physically constrain and guide collagen fibril direction. The degree of collagen fibril is also modulated by adding calcium chloride for leading the fibril uniformly distributed in fabricated microstructures. In addition, a large area 2D collagen structure has been successfully fabricated by regulating collagen solution to neutral condition and keeping the photoactivator ability of RB. The study of protein fabricated structure can further apply to complex extracellular matrix (ECM) and tissue engineering aspects.
1. M. Goepper-Mayer, “Ober elementarakte mit zwei quantensprungen,” Ann. Phys. 9, 273-294 (1931).
2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997).
4. G. Witzgall, R. Vrijen, and E. Yablonovitch, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23, 1745-1747 (1998).
5. H. Brian, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999).
6. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
7. http://www.olympusmicro.com/
8. 李宜真、蘇子正,“雙光子顯微術於生物組織的應用”,物理雙月刊 24, 413-420 (2001)。
9. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. M. T. Wright, N. Atkinson, and R. R. Kortum, “Development of a multivariate statistical algorithm to analyze human cervix tissue fluorescence spectra acquired in vivo,” Laser Surg. Med. 19, 46-62 (1996).
10. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitativefluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682-687 (2002).
11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley (2007).
12. P. A. Franken, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119 (1961).
13. J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quant. Electron. 10, 435-439 (1978).
14. I. Maxwell, Application of Femtosecond Lasers for Subcellular Nanosurgery, Harvard University PhD Thesis (2006).
15. K. Koenig, “Multiphoton microscopy in life sciences,” J. Microscopy 200, 83-104 (2000).
16. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, Springer-Verlag (1996).
17. P. S. Binder, G. O. Waring III, P. N. Arrowsmith, and C. Wang, ”Histopathology of traumatic corneal rupture after radial keratotomy,” Arch. Opthalmol. 106, 1584-1590 (1988).
18. S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola,” Multiphoton excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: bioactivity and enzymatic degradation,” Biomacromolecules 6, 1465-1474 (2005).
19. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields,” J. Fluoresc. 17, 345-349 (2007).
20. H.-R. Shen, J. D. Spikes, P. Kopecekova, and J. Kopecek, “Photodynamic crosslinking of proteins. I. model studies using histidine- and lysine-containing N- (2-hydroxypropyl) methacrylamide copolymer,” J. Photochem. Photobiol. B: Biol. 34, 203-210 (1996).
21. C.-H. Lien, Three-Dimensional Polymer Microdevices with Gold Nanorods, National Cheng Kung University Master Thesis (2010).
22. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
23. H. R. Shen, J. D. Spikes, C. J. Smith, and J. Kopecek, “Photodynamic crosslinking of proteins IV nature of the His-His bond(s) formed in the rose bengal-photosensitized crosslinking of N-benzoyl-L-histidine,” J. of Photoch. Photobio. A: Chem. 130, 1-6 (2000).
24. 吳建豪,藉由飛秒雷射製作三維電漿子元件,國立成功大學工程科學研究所碩士論文 (2009)。
25. Y.-D. Su, Study of Cell-substrate Contact via Surface Plasmon Phase Microscopy and Microfabrication, National Cheng Kung University PhD Thesis (2010).
26. C. H. Evans and B. J. Drouven, “The promotion of collagen polymerization by lanthanide and calcium ions,” Biochem. J. 213, 751-758 (1983).
27. A. J. Kvist, A. E. Johnson, M. Morgelin, E. Gustafsson, E. Bengtsson, K. Lindblom, A. Aszodi, R. Fassler, T. Sasaki, R. Timpl, and A. Aspberg, “Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation,” J. Biol. Chem. 281, 33127-33139 (2006).
28. 宋信文、梁晃千,“建立人類的身體工房-組織工程”,科學發展 362,6-11 (2003)。
29. E. D. Hay, Cell Biology of Extracellular Matrix, Plenum Press (1991).
30. 李宜書,“淺談組織工程”,物理雙月刊 24,430-435 (2006)。
31. 林佩姿,The Study of Neovasculization in a Collagen Scaffold,國立成功大學生物科技研究所碩士論文 (2003)。
32. P. Fratzl, Collagen Structure and Mechanics, Springer (2008).
33. 王正一,醫學工程原理與應用,正中書局 (1996)。
34. J. R. Deatherage and E. J. Miller, “Packaging and delivery of bone induction factors in a collagenous implant,” Coll. Relat. Res. 7, 225-231 (1987).
35. L. S. Leipziger, V. Glushko, B. DiBernardo, F. Shafaie, J. Noble, J. Nichols, and O. M. Alvarez, “Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings,” J. Am. Acad. Dermatol 12, 409-419 (1985).
36. M. Kuzuya and J. L. Kinsella, “Reorganization of endothelial cord-like structures on basement membrane complex (matrigel): involvement of transforming growth factor beta 1,” J. Cell Physiol. 161, 267-276 (1994).
37. B. Chevallay, N. Abdul-Malak, and D. Herbage, “Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities,” J. Biomed. Mater Res. 49, 448-459 (2000).
38. W. Friess, “Collagen-biomaterial for drug delivery,” Eur. J. Pharm. Biopharm. 45, 113-136 (1998).
39. J. D. Pitts, A. R. Howell, R. Taboada, I.Banerjee, J. Wang, S. L. Goodman, and P. J. Campagnola, “New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen,” Photochem. Photobiol. 76, 135-144 (2002).
40. S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multiphoton excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: bioactivity and enzymatic degradation,” Biomacromolecules 6, 1465-1474 (2005)
41. M. Iosin, O. Stephan, S. Astilean, A. Dupperay, and P. L. Baldeck, “Microstructuration of protein matrices by laser-induced photochemistry,” J. Optoelectro. Adv. Mat. 9, 716-720 (2007).