簡易檢索 / 詳目顯示

研究生: 邱永振
Chiou, Yung-Jen
論文名稱: 以電泳沉積法研製具有蕭特基接觸結構之場效應式半導體元件
Fabrication of Schottky Contact Based Field-Effect Semiconductor Devices by an Electrophoretic Deposition (EPD) Technique
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 113
中文關鍵詞: 費米能階釘住效應蕭特基能障電泳沉積法熱蒸鍍氫氣感測器
外文關鍵詞: Fermi-level pinning effect, Schottky barrier height, Electrophoretic deposition, Thermal evaporation, Hydrogen sensor
相關次數: 點閱:113下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們以有機金屬化學氣相沉積法成長及研製磷化銦鎵/砷化鋁鎵/砷化鎵擬晶性高電子移動率電晶體。由於許多研究指出高溫及高能量的物理真空鍍膜技術容易對基材表面造成熱破壞,使得費米能階幾乎釘在某一定值,蕭特基能障高度也相對較低,且無法隨著改變不同金屬功函數而有所變動。
    為了改善費米能階釘住效應對元件影響,於本論文中使用電泳沉積法沉積金屬閘極,以獲得良好的蕭特基接面。 為了比較電泳沉積法與傳統熱蒸鍍之元件特性,我們分別對兩種方法所製作的元件做各種分析及測試,包含表面粗糙度、金屬粒徑大小及直流與微波量測等。
    最後將電泳元件應用於氫氣感測上,其元件展現良好的直流特性及高氫氣感測靈敏度,可開發為高性能氫氣感測元件。但其元件特性易受溫度所影響,是電泳技術需改進之處。

    In this thesis, InGaP/AlGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs), grown by metal organic chemical vapor deposition (MOCVD), are fabricated and investigated. Due to the thermal damage of physical vacuum deposition, the Fermi-level is almost pinned at constant value instead of different metal work function. This results in a lower Schottky barrier height of the studied devices.In order to discard Fermi-lever pinning effect, the electrophoretic deposition (EPD) technology is employed to deposit metal gate to obtain well-behaved Schottky contact interface. In order to compare the characteristics of the studied devices with electrophoretic deposition (EPD) and thermal evaporation (TE), some tests and analysis to the devices are demonstrated, including surface roughness analysis, grain size, and measurements of DC and microwave.
    Finally, the EPD device was serve to be a hydrogen sensor. It also shows good DC performance and high hydrogen sensing performance. However, the EPD device exhibits stronger temperature-dependence and inferior microwave performance than the TE device.

    Abstract Table Lists Figure Captions Chapter 1. Introduction …………………………………………………….. 1 1-1. Thesis Organizations ……………………………………………….. 3 Chapter 2. Temperature-Dependent Characteristics of a Pseudomorphic High Electron Mobility Transistors (PHEMTs) with Graded Triple Delta-Doped Sheets 2-1. Introduction …………………………………………………… 5 2-2. Device Fabrication ……………………………………………. 7 2-2-1. Material Growth and Device Fabrication ……………………..……. 7 2-2-2. Preparation of Stable Pd Nanoparticles Suspension ……………...… 8 2-2-3. Apply an Electric Field Between Two Electrodes ………………… 10 2-3. Electrophoretic Deposition Pd Film Analysis …………………. 11 2-3-1. Grain Size ………………………………………………………….. 11 2-3-2. Surface Roughness ………………………………………………… 12 2-3-3. Auger Depth Profile ……………………………………………….. 12 2-4. Experimental Results and Discussion ………………………….. 13 2-4-1. DC Performance …………………………………………………… 13 2-4-2. Microwave Characteristics ………………………………………… 18 2-5. Summary …………………………………………………………….. 19 Chapter 3. Investigation of Hydrogen-Sensing Characteristics of a Pd/GaN Schottky Diode by an Electrophoretic Deposition Technique 3-1. Introduction ….……………………………………………………… 21 3-2. Device Fabrication …………………………………………………. 23 3-2-1. Material Growth and Device Fabrication ………………………….. 23 3-2-2. System Setup ………………………………………………………. 24 3-3. Experimental Results and Discussion ……………………………… 25 3-3-1. Hydrogen-Sensing Performance ……………………………...…… 25 3-3-2. Dynamic Response Analysis ……………………………………… 27 3-4. Summary …………………………………………………………… 28 Chapter 4. The GaN/AlGaN/GaN High Electron Mobility Transistors with Pd Gate by an Electrophoretic Deposition Technique 4-1. Introduction …………………………………………………..… 29 4-2. Device Fabrication …………………………………………..…… 31 4-3. Experimental Results and Discussion ………………………..…... 31 4-3-1 Electrophoretic Deposition Pd Film Analysis ………………….… 32 4-3-2 DC Performance ………………………………………………….. 32 4-3-3 Sensing Performance …………………………………………...… 34 4-3-4 Microwave Characteristics ……………………………………….. 36 4-4. Summary ………………………………………………………….. 36 Chapter 5. Conclusion and Prospect 5-1. Conclusion …………………………………………………………. 38 5-2. Prospect …………………………………………………………….. 40 References ………………………………………………………………………… 41 Tables Figures Publication List

    [1] P. M. Asbeck, D. L. Miller, W. C. Petersen, and C. G. Kirkpatrick, “GaAs/GaAlAs heterojunction bipolar transistors with cutoff frequencies above 10 GHz,” IEEE Electron Device Lett., vol. 3, pp. 366-368, 1982.
    [2] W. V. Mclevige, H. T. Yuan, W. M. Duncan, W. R. Frensley, F. H. Doerbeck, H. Morkoc, and T. J. Drummond, “GaAs/AlGaAs heterojunction bipolar transistors for integrated circuit applications,” IEEE Electron Device Lett., vol. 3, pp. 43-45, 1982.
    [3] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a GaInP emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
    [4] M. Inada, Y. Ota, A. Nakagawa, M. Yanagihara, T. Hirose, and K. Eda, “AlGaAs/GaAs heterojunction bipolar transistors with small size fabricated by a multiple self-alignment process using one mask,” IEEE Trans. Electron Devices, vol. 34, pp. 2405-2411,1987.
    [5] M. Kurata and J. Yoshida, “Modeling and characterization for high-speed GaAlAs-GaAs n-p-n heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 31, pp. 467-473, 1984.
    [6] N. Pan, J. Elliott, M. Knowles, D. P. Vu, K. Kishimoto, J. K. Twynam, H. Sato, M. T. Fresina, and G. E. Stillman, “High reliability InGaP/GaAs HBT,” IEEE Electron Device Lett., vol. 19, pp. 115-117, 1998.
    [7] W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei, and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., vol. 20, pp. 510-513, 1999.
    [8] P. C. Chang, A. G. Baca, N. Y. Li, P. R. Sharps, H. Q. Hou, J. R. Laroche, and F. Ren, “InGaAsN/AlGaAs p-n-p heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 76, pp. 2788-2790, 2000.
    [9] H. J. Pan, S. C. Feng, W. C. Wang, K. W. Lin, K. H. Yu, C. Z. Wu, L. W. Laih, and W. C. Liu, “Investigation of an InGaP/GaAs resonant-tunneling heterojunction bipolar transistor,” Solid-State Electron., vol. 45, pp. 489-494, 2001.
    [10] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
    [11] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
    [12] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/(p+)-InGaP/n-GaAs heterojunction camel-gate FET,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
    [13] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
    [14] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like fet for high-breakdown, low-leakage, and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001.
    [15] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
    [16] K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature dependence of gate current and breakdown behaviors in an n+-GaAs/p+-InGaP/n-GaAs high-barrier gate field-effect transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
    [17] H. M. Chuang, S. Y. Cheng, X. D. Liao, C. Y. Chen, and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
    [18] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InAgP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
    [19] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
    [20] M. Zaknoune, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron, and Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” Device Research Conference Digest, 56th Annual, pp. 34-35, 1998.
    [21] K. Eisenbeiser, R. Droopad, and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
    [22] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMTs on GaAs substrate,” IEEE Electron Device Lett., vol. 20, pp. 123-125, 1999.
    [23] M. Boudrissa, E. Delos, Y. Cordier, D. Theron, and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, pp. 512-514, 2000.
    [24] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Device Lett., vol. 24, pp. 724-726, 2003.
    [25] K. B. Chough, B. W. P. Hong, C. Caneau, J. I. Song, K. I. Jeon, S. C. Hong, and K. Lee, “Graded pseudomorphic channel AlInP/AlInAs/GaInAs HEMTs with high channel breakdown voltage,” IEE Electron. Lett., vol. 30, pp. 453-454, 1994.
    [26] E. A. Moon, J. L. Lee, and H. M. Yoo, “Selective wet etching of GaAs on AlXGa1-XAs for AlGaAs /InGaAs/AlGaAs pseudomorphic high electron mobility transistor,” J. App. Phys., vol. 84, pp. 3933-3938, 1998.
    [27] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs PHEMTs,” IEEE Electron Device Lett., vol. 21, pp. 141-143, 2000.
    [28] K. H. Yu, H. Mi. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
    [29] R. Khatri and K. Radhakrishnan, “Study of highly selective, wet gate recess process for Al0.25Ga0.75As/GaAs based pseudomorphic high electron mobility transistors,” J. Vac. Sci. & Technol. B, vol. 24, pp. 1653-1657, 2004.
    [30] C. Gaquiere, J. Grunenputt, D. Jambon, E. Delos, D. Ducatteau, M. Werquin, D. Theron, and P. Fellon, “A high-power W-band psuedomorphic InGaAs channel PHEMT,” IEEE Electron Device Lett., vol. 26, pp. 533-534, 2005.
    [31] H. C. Duran, L. Ren, M. Beck, M. A. Py, M. Begems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMTs,” IEEE Trans. Electron Devices, vol. 45, pp. 1219-1225, 1998.
    [32] C. Meliani, G. Post, G. Rondeau, J. Decobert, W. Mouzannar, E. Dutisseuil and R. Lefevre, “DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product,” Electron. Lett., vol. 38, pp. 1175-1177, 2002
    [33] R. Grundbacher, R. Lai, M. Nishimoto, T. P. Chin, Y. C. Chin, Y. C. Chen, M. Barsky, T. Block, and D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” IEEE Electron Device Lett., vol. 20, pp. 517-519, 1999.
    [34] H. Hasegawa, “Controlled formation of high Schottky barriers on InP and related materials,” Proc. 8th Int. Conf. InP and Related Materials, pp. 11-15, 1998.
    [35] M. Boudrissa, E. Delos, Y. Cordier, D. Theron, and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, pp. 512-514, 2000.
    [36] H. Hasegawa, “Fermi level pinning and Schottky barrier height control at meatl-semiconductor interfaces of InP and related materials,” Jpn. J. Appl. Phys., vol. 38 pp. 1098-1102, 1999.
    [37] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. & Technol. B, vol. 4, pp. 1130-1138, 1986.
    [38] J. Zhao, X. Wang, and L. Li, “Electrophoretic deposition of BaTiO3 films from aqueous suspensions,” Mater. Chem. Phys., vol. 99, pp. 350-353, 2006.
    [39] T. Moskalewicz, A. C. Filemonowicz, and A. R. Boccaccini, “Microstructure of nanocrystaline TiO2 films produced by electrophoretic deposition on Ti-6Al-7Nb alloy,” Surf. Coat. Technol., vol. 201, pp. 7467-7471, 2007.
    [40] S. V. Mahajan, D. W. Kavich, M. L. Redigolo, J. H. Dickerson, and J. Mater, “Structural properties of electrophoretically deposited europium oxide nanocrystalline thin films,” J. Mater. Sci., vol. 41, pp. 8160-8165, 2006.
    [41] L. Beara and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Prog. Mater. Sci., vol. 52, pp. 1-61, 2007.
    [42] R. N. Basu, M. J. Mayo, and C. A. Randall, “Free standing sintered ceramic films from electrophoretic deposition,” Jpn. J. Appl. Phys, vol. 38, pp. 6462-6465, 1999.
    [43] O. Omer, V. D. Biest, and L. J. Vandeperre, “Electrophoretic deposition of materials,” Annu. Rev. Mater. Sci., vol. 29, pp. 327-352, 1999.
    [44] S. Yang, W. Cai, G. Liu, and H. Zeng, “From nanoparticles to nanoplates: preferential oriented connection of Ag Colloids during Electrophoretic Deposition,” J. Phys. Chem. C, vol. 113, pp. 7692-7696, 2009.
    [45] A. Wu and P. M. Vilarinho, “Electrophoretic deposition of lead zirconate titanate films on metal foils for embedded components,” J. Am. Ceram. Soc., vol. 89, pp. 575-581, 2006.
    [46] O. V. D. Biest, S. Put, G. Anne, and J. Vleugels, “Electrophoretic deposition fo coatings and free standing objects,” J. Mater. Sci., vol. 39, pp. 779-785, 2004.
    [47] Y. W. Chung, H. S. Fang, J. H. Lee, and C. J. Tsai, “Fabrication of flexible thin film with pattern structure and macroporous array consisting of nanoparticles by electrophoretic deposition,” Jpn. J. Appl. Phys., vol. 49 , 2010.
    [48] N. Dougami and T. Takada, “Modification of metal oxide semiconductor gas sensor by electrophoretic deposition,” Sens. Actuator B-Chem., vol. 93, pp. 316-320, 2003.
    [49] Y. C. Wang, I. C. Leu, J. H. Lee, and M. H. Hon, “Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition,” J. Mater. Chem,, vol. 12, pp. 2439-2444, 2002.
    [50] L. B. Lai, D. H. Chen, and T. C. Huang, “Preparation and characterization of Ti-supported nanostructured Pt electrodes by electrophoretic deposition,” Mater. Res. Bull., vol. 36, pp. 1049-1055, 2001.
    [51] M. Chen, Y. G. Feng, L. Y. Wang, L. Zhang, and J. Y. Zhang, “Study of palladium nanoparticles prepared from water-in-oil microemulsion,” Colloid Surf. A-Physicochem. Eng. Asp., vol. 281, pp. 119-124, 2006.
    [52] A. S. Bommarius, J. F. Holzwarth, D. I. C. Wang, and T. A. Hatton, “Coalescence and solubilizate exchange in a cationic four-component reversed micellar system,” J. Phys. Chem., vol. 94, pp. 7232-7239, 1990.
    [53] M. P. Pileni, “Reverse micelles as microreactors,” J. Phys. Chem., vol. 97, pp. 6961-6973, 1993.
    [54] P. L. Luisi and L. J. Magid, “Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions,” CRC Crit. Rev. Biochem., vol. 20, pp. 409, 1986.
    [55] J. Shi, K. S. Chen, Q. Li, T. J. Jackson, P. E. O’Neill, and L. Tsang, “A parameterized surface reflectivity model and estimation of Bare-Surface Soil moisture with L-band radiometer,” IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 12, 2002.
    [56] H. C. Chiu, M. J. Hwu, S. C. Yang, and Y. J. Chan, “Enhanced power performance of enhancement-mode Al0.5Ga0.5As/In0.15Ga0.85As PHEMTs using a low-k BCB passivation,” IEEE Electron Device Lett., vol. 23, pp. 243-245, 2002.
    [57] H. C. Chiu, Y. C. Huang, C. W. Chen, and L. B. Chang, “Electrical characteristics of passivated pseudomorphic HEMTs with P2S5/(NH4)2Sx pretreatment,” IEEE Trans. Electron Device., Vol. 55, 721-726, 2008.
    [58] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu. “High performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFETs grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, pp. 456-457, 1994.
    [59] H. M. Chuang, S. Y. Cheng, X. D. Liao, C. Y. Chen, and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
    [60] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate InGaP/InGaAs pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
    [61] Y. S. Lin and Y. L. Hsieh, “Temperature-dependent characteristics of InGaP/InGaAs/GaAs high-electron mobility transistor measured between 77 and 470 K,” J. Electrochem. Soc., vol. 152, pp. G778-G780, 2005.
    [62] C. Groves, R Ghin, J. P. R. David and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron Devices, Vol. 50, pp. 2027-2031, 2003.
    [63] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
    [64] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
    [65] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A systematic approach to the measurement of ideality factor, series resistance and barrier height for Schottky diodes,” J. Appl. Phys., vol. 72, pp. 4739-4742, 1992.
    [66] W. Gao, P. R. Berger, R. G. Hunsperger, G. Zydzik, W. W. Rhodes, H. M. O’Bryan, D. Sivco, and A. Y. Cho, “Transparent and opaque Schottky contacts on undoped In0.52Al0.48As grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 66, pp. 3471-3473, 1995.
    [67] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed., John Wiley & Sons, New York, pp. 237–251, 1985.
    [68] Y. S. Lin, S. S. Lu, and U. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997.
    [69] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
    [70] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol. 18, pp. 287-289, 1997.
    [71] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS 97 Proceedings, 1997 International, vol. 2, pp. 431-440, 1997.
    [72] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
    [73] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A, vol. 18, pp. 252-256, 1995.
    [74] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
    [75] W. Gopel, J. Hesse, and A. Mandelis, “Sensors,” vol. 1, ch 10, Weinheim: VCH press, 1991.
    [76] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
    [77] W. J. Buttner, G. J. Maclay and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
    [78] S. R. Morrison, “Semiconductor gas sensors,” Sens. Actuator B-Chem., vol. 2, pp. 329-341, 1982.
    [79] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, vol. 18, pp. 779-784, 2002.
    [80] L. B. Lai, D. H. Chen, and T. C. Huang, “Preparation and characterization of Ti-supported nanostructured Pt electrodes by electrophoretic deposition,” Mater. Res. Bull., vol. 36, pp. 1049-1055, 2001.
    [81] Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd–InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26, pp. 62-65, 2005.
    [82] L. M. Lechuga, A. Calle, D. Golmayo and F. Brines, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992.
    [83] C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, and G. E. Jang, “Pd- and Pt-SiC Schottky Diodes for Detection of H and CH at High Temperature,” Sens. Actuators B, vol. 77, pp. 455-462, 2001.
    [84] Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen detection,” Sens. Actuators B, vol. 93, pp. 327-332, 2003.
    [85] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton and F. Ren, “Hydrogen-Sensitive GaN Schottky Diodes,” Solid State Electron., vol. 47, pp. 1069-1073, 2003.
    [86] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-AlGaAs MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 390-392, 2003.
    [87] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd–InGaP Schottky diodes hydrogen sensors,” IEEE Sensors J., Vol. 4, no. 1, pp. 72-79, Jan. 2004.
    [88] T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mater., vol. 12, pp. 181-214, 1983.
    [89] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd-GaAs and Pd-InP metal-oxide-semiconductor schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254–6259, 2001.
    [90] T. Sato, C. Kaneshiro, and H. Hasegawa, “The strong correlation between interface microstructure and barrier height in Pt/n-InP Schottky contacts formed by an in situ electrochemical process,” Jpn. J. Appl. Phys., vol. 38, pp. 1103-1106, 1999.
    [91] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
    [92] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp. 515-518, 1991.
    [93] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, 2001.
    [94] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
    [95] C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “Study of a new field-effect resistive hydrogen sensor based on a Pd/oxide/AlGaAs transistor,” IEEE Trans. Electron. Devices, vol. 52, pp. 1224-1231, 2007.
    [96] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
    [97] M. Lofdahl, M. Eriksson, M. Johansson, and I. Lundstrom, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol. 91, pp. 4275-4280, 2002.
    [98] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, “High breakdown voltage undoped AlGaN–GaN power HEMT on sapphire substrate and its demonstration for DC–DC converter application,” IEEE Trans. Electron Device, vol. 51, pp. 1913-1917, 2004.
    [99] B. S. Kang, S. Kim, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, S. N. G. Chu, K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Pressure-induced changes in the conductivity of AlGaN/GaN high-electron mobility-transistor membranes,” Applied Physics Letters, vol. 85, pp. 2962-2964, 2004.
    [100] U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs an overview of device operation and applications,” Proceedings of the IEEE, vol. 90, No. 6, 2002.
    [101] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Physical Review B, vol. 56, pp. R10024-R10027, 1997.
    [102] L. Y. Chen, S. Y. Cheng, T. P. Chen K. Y Chu, T. H. Tsai, Y. C. Liu, X. D. Liao, and W. C. Liu, “On an InGaP/InGaAs double channel pseudomorphic high electron mobility transistor with graded triple δ-doped sheets,” IEEE Trans. Electron Devices, vol. 55, pp. 3310-3313, 2008.
    [103] Y. S. Lin and Y. L. Hsieh, “Temperature-dependent characteristics of InGaP/InGaAs/GaAs high-electron mobility transistor measured between 77 and 470 K,” J. Electrochem. Soc., vol. 152, pp. G778-G780, 2005.
    [104] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres,” Sens. Actuators B, vol. 123, pp. 1040-1048, 2007.
    [105] T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, T. P. Chen, L. Y. Chen, K. Y. Chu, C. F. Chang, and W. C. Liu, “Hydrogen sensing characteristics of a Pd/AlGaN/GaN Schottky diode,” Appl. Phys. Express, vol. 1, pp. 041102-1-041102-3, 2008.
    [106] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, and W. C Liu, “Characteristics of a Pd-oxide-In0.49Ga0.51P high electron mobility transistor (HEMT)-based hydrogen sensor,” Sens. Actuator B-Chem., vol. 113, pp. 29-35, 2006.
    [107] C. W. Hung, H. I. Chen, T. H. Tsai, C. F. Chang, T. P. Chen, L. Y. Chen, K. Y. Chu, and W. C. Liu “Hydrogen-induced effect on device performance of a Pd/GaAs-based heterostructure field-effect transistor,” J. Electrochem. Soc., vol. 155, pp. H243-H246, 2008.

    下載圖示 校內:2016-08-02公開
    校外:2016-08-02公開
    QR CODE