| 研究生: |
邱艾伶 Chiu, Ai-Ling |
|---|---|
| 論文名稱: |
建立Garin-Lowry模型之就業及居住政策效果彈性分析程序 Elasticity Analysis Procedure for Employment and Residential Policy Effects in Amending the Garin-Lowry Model |
| 指導教授: |
陳彥仲
Chen, Yen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 格林勞利模型 、多項羅吉特模型 、居住區位選擇 、政策彈性分析 |
| 外文關鍵詞: | Garin-Lowry Model, Multinomial Logit Model, Residential Location Choice, Policy Elasticity Analysis |
| 相關次數: | 點閱:120 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球都市化的加速,越來越多人口聚集至都市地區,Nations(2018)預測,到2050年,全球約68%的人口將居住於都市地區。在此背景下,準確預測都市地區的人口分布對於都市規劃和政策制定至關重要。Garin-Lowry 模型(Garin, 1966)基於空間互動模型,以數學矩陣形式推估未來居住人口與服務業人口的分布狀態。該模型長期以來已廣泛應用於都市計畫實務,但其在計算居住分派時僅能考慮單一居住吸引因素與交通阻力因素,難以充分反映及業人口的實際居住區位選擇決策過程。因此,本研究提出結合多項Logit模型與Garin-Lowry模型的吸引力空間機率分派模型,透過將Garin-Lowry模型中的分派(allocate)函數修正為多項Logit函數形式,以建立居住吸引機率矩陣(H’),此方法不僅增強傳統模型對居住區位選擇行為的解釋能力,同時保持 Garin-Lowry 模型的簡單結構,以改善其既有缺點。
實證分析部分,本研究以台南市16個行政區為研究範圍,並劃分為府城、科工、永康、新豐及南科等五個生活圈進行探討,研究範圍涵蓋台南科學園區、舊台南市中心及周邊科技工業區,並以製造業作為基礎產業。研究結果顯示,相較於傳統模型,吸引力空間機率分派模型在製造業人口基數較大的地區(如科工、永康、新豐生活圈)對於居住及服務業人口的估計準確度更高。多項Logit模型的結果顯示,顯著影響居住選擇的變數包括家戶規模、每人可居住樓地板面積、房價年增長率及每萬人生活服務設施數。本研究進一步進行政策情境分析,探討不同就業與居住政策下的人口分布變化,研究結果顯示,南科生活圈的製造業擴張明顯促進區域內的居住人口與服務業人口成長,並進一步對周邊生活圈產生正向溢出效應。此外,府城生活圈的居住環境改善推升房價上漲,進一步提升區域吸引力,吸引更多居民遷入府城生活圈。本研究的貢獻在於構建一種操作簡便且適用性強的模型方法,可應用於台灣都市規劃實務中的人口分派。
With accelerating urbanization, predicting population distribution is crucial for urban planning. The Garin-Lowry model, widely used in urban planning, estimates residential and service sector populations but is limited by its reliance on a single attractiveness factor and transportation resistance.
This study integrates the multinomial logit model with the Garin-Lowry framework, proposing an Attractiveness-Based Spatial Probability Allocation Model. By replacing the allocation function with a multinomial logit function, the model better captures residential choice behavior while maintaining computational simplicity.
Empirical analysis of 16 districts in Tainan, grouped into five lifestyle circles, shows that the proposed model improves accuracy in areas with a large manufacturing workforce. Key residential choice factors include household size, floor area per person, housing price growth rate, and living service facilities.Policy simulations reveal that manufacturing expansion in Nanke drives local and spillover population growth, while residential improvements in Fucheng increase housing demand and attractiveness. This study offers a practical and adaptable model for urban population allocation, aiding planning decisions.
Abbas, S., Ansari, M. R. K., & Ilyas, M. (2015). Population density pattern using spatial interaction models and its simulation. Journal of Computer Science of Newports Institute of Communications and Economics, 6, 75–94.
Barber, G. M. (1977). Urban population distribution planning. Annals of the Association of American Geographers, 67(2), 239-245.
Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel demand. MIT Press.
Bollinger, C. R., & Ihlanfeldt, K. R. (2003). The intraurban spatial distribution of employment: Which government interventions make a difference? Journal of Urban Economics, 53(3), 396–412.
Calvo, F., De Oña, J., & Arán, F. (2013). Impact of the Madrid subway on population settlement and land use. Land Use Policy, 31, 627–639.
Cervero, R. (1989). Jobs-housing balancing and regional mobility. Journal of the American Planning Association, 55(2), 136-150.
Cervero, R., & Landis, J. (1995). The transportation-land use connection still matters. Access, 7, 2–10.
Cervero, R., & Landis, J. (1997). Twenty years of the Bay Area Rapid Transit system: Land use and development impacts. Transportation Research Part A: Policy and Practice, 31(4), 309-333.
Chapple, K., & Jeon, J. S. (2021). Big Tech on the block: Examining the impact of tech campuses on local housing markets in the San Francisco Bay Area. Economic Development Quarterly, 35(4), 351-369.
Chen, Y., & Li, S. (2021). Impact of inaccurate urban population forecasts on infrastructure development: A case study. Urban Science, 6(2), 38.
Cho, S., Gordon, P., Moore, J. E., Richardson, H. W., Shinozuka, M., & Chang, S. E. (2002). Integrating transportation network and regional economic models to estimate the costs of a large urban earthquake. Journal of Regional Science, 41(1), 39-65.
Feng, J., & Hou, H. (2023). Review of research on urban social space and sustainable development. Sustainability, 15(22), 16130.
Garin, R. (1966). A matrix formulation of the Lowry model for intra-metropolitan activity allocation. Journal of the American Institute of Planners, 32, 361–364.
Gaur, S., & Singh, R. (2023). Land use land cover modeling: A comprehensive review of techniques and applications. Agricultural and Food Engineering, 1(1), 1-20.
Gidlöf-Gunnarsson, A., & Öhrström, E. (2010). Attractive "quiet" courtyards: A potential modifier of urban residents' responses to road traffic noise? International Journal of Environmental Research and Public Health, 7(9), 3359–3375. https://doi.org/10.3390/ijerph7093359
Geurs, K. T., & van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography, 12(2), 127-140.
Glaeser, E. L., Gyourko, J., & Saks, R. E. (2005). Why is Manhattan so expensive? Regulation and the rise in housing prices. The Journal of Law and Economics, 48(2), 331–369. https://doi.org/10.1086/429979.
Giuliano, G. (1995). The weakening transportation-land use connection. Access, 6, 3–11.
Giuliano, G., Redfearn, C., Agarwal, A., & He, S. (2011). Network accessibility and employment centres. Urban Studies, 49(1), 77-95.
Gomaa, M. M. (2023). Macro-level factors shaping residential location choices: Examining the impacts of density and land-use mix. Land, 12, 748.
Guldmann, J.-M., & Wang, F. (1998). Population and employment density functions revisited: A spatial interaction approach. Papers in Regional Science, 77(2), 189-211.
Habib, M. A., Shaw, N., & Siabanis, N. (2023). Modeling residential location of the elderly population in the Greater Toronto and Hamilton Area, Canada. Journal of Urban Planning and Development.
Higgins, C. C., & Kanaroglou, P. (2016). Forty years of modelling rapid transit's land value uplift in North America: Moving beyond the tip of the iceberg. Transport Reviews, 36(5), 610-634.
Hu, C.-P. (2022). Urban land-use allocation with resilience: Application of the Lowry model. Sustainability, 14(23), 15927.
Huang, S.-L., & Hsu, W.-L. (2003). Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landscape and Urban Planning, 63(1), 61-74.
Hutchinson, B. (1973). Transport analysis of regional development plans. Journal of the Urban Planning and Development Division, 99(1), 57–68. https://doi.org/10.1061/JUPDAJ.0000174.
Jiang, M., Hu, J., & Gao, X. (2024). Community life circle, neighbourly interaction, and social cohesion: Does community space use foster stronger communities? Land, 13(7), 1094.
Jin, J., & Kim, D. (2018). Expansion of the subway network and spatial distribution of population and employment in the Seoul metropolitan area. Urban Studies, 55(11), 2499-2521. https://doi.org/10.1177/0042098017725476
Lee, M., & Holme, P. (2015). Relating land use and human intra-city mobility. PLOS ONE, 10(10), e0140152.
Li, Y., Wang, X., & Smith, J. (2022). The impact of AI-driven models on urban mobility: A comprehensive analysis. arXiv.
McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105-142). Academic Press.
McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15(5), 447–470. http://www.jstor.org/stable/2678603
Mazzei, M., & Palma, A. L. (2014). Comparative analysis of models of location and spatial interaction. In B. Murgante, S. Misra, A. M. A. C. Rocha, C. Torre, J. Rocha, & M. I. Falcão (Eds.), Computational Science and Its Applications – ICCSA 2014, Lecture Notes in Computer Science (Vol. 8582, pp. 253–267). Springer. https://doi.org/10.1007/978-3-319-09147-1_19
Montgomery, R. M. (2023). Dynamic Keller-Segel model of population density and economic factors: A simulation study over a century. arXiv.
Pan, S. (2023). Health, air pollution, and location choice. Journal of Environmental Economics and Management, 119, 102794.
Papa, E., & Coppola, P. (2012). Gravity-based accessibility measures for integrated transport-land use planning (GraBAM). In A. Hull, C. Silva, & L. Bertolini (Eds.), Accessibility Instruments for Planning Practice. COST Office.
Peng, Z. (1997). The jobs-housing balance and urban commuting. Urban Studies, 34(8), 1215-1235.
Schinnar, A. P. (1978). Invariant distributional regularities of nonbasic spatial activity allocations: The Garin–Lowry model revisited. Environment and Planning A: Economy and Space, 10(3), 327–336.
Silveira, L. E., Alves, D., Lima, M., Alcantara, A., & Puig, J. (2011). Population and railways in Portugal, 1801–1930. Journal of Interdisciplinary History, 42(1), 29–52.
Smith, J., & Johnson, L. (2024). Residential location choice: An investigation of transportation, public facilities, and social factors. Journal of Urban Studies, 15(3), 245-268.
Sultana, S. (2002). Job/housing imbalance and commuting time in the Atlanta metropolitan area: Exploration of causes of longer commuting time. Urban Geography, 23(8), 728-749.
Tang, H., Ye, Y., & Zhong, X. (2020). Measuring human-scale living convenience through multi-sourced urban data and a geodesign approach: Buildings as analytical units. Sustainability, 12(11), 4712.
Timmermans, H., & van Noortwijk, L. (1995). Context dependencies in housing choice behavior. Environment and Planning A, 27(2), 181–192. https://doi.org/10.1068/a270181.
Timmermans, H. (2003, August). The saga of integrated land use-transport modeling: How many more dreams before we wake up? Paper presented at the 10th International Conference on Travel Behavior Research, Lucerne, Switzerland.
Wang, F. (1998). Urban Population Distribution with Various Road Networks: A Simulation Approach. Environment and Planning B: Planning and Design, 25(2), 265-278. https://doi.org/10.1068/b250265.
Wilson, A. (2016). New roles for urban models: Planning for the long term. Regional Studies, Regional Science, 3(1), 48–57. https://doi.org/10.1080/21681376.2015.1109474.
Wang, R., & Liu, X. (2022). Challenges of inaccurate population forecasts on land use planning: Implications for sustainable urban development. Land, 11(12), 2248.
Xinguang, Chen., Hui, Hu., Xiaohui, Xu., Jie, Gong., Yaqiong, Yan., Fang, Li. (2018). Probability Sampling by Connecting Space with Households Using GIS/GPS Technologies. Journal of Survey Statistics and Methodology, 6(2):149-168.
Yi, P., & Chan, Y. (1988). Bifurcation and disaggregation in Lowry–Garin derivative models: Theory, calibration, and case study. Environment and Planning A: Economy and Space, 20(9), 1253–1267.
Yang, Z., & Pan, Y. (2020). Human capital, housing prices, and regional economic development: Will “vying for talent” through policy succeed? Cities, 98, 102581.
Yang, H. J., Song, J., & Choi, M. J. (2016). Measuring the externality effects of commercial land use on residential land value: A case study of Seoul. Sustainability, 8(5), 432.
Zhu, X., & Liu, S. (2004). An integrated GIS approach to accessibility analysis. Transactions in GIS, 8(1), 45–62.
何東波、呂明毅(1985),土地使用與交通運輸模式-傳統模式與整合模式的比較。都市與計劃,12(1),21-45。
呂明毅(1984)。都市土地使用分派及交通量分派整合模式均衡點的探討(碩士論文)。國立成功大學交通管理科學研究所。
沈宜萱(2009)。地方基礎產業與空間互動之關聯實證分析:以嘉義地區之醫療產業為例(碩士論文)。國立成功大學都市計劃研究所。
林享博(1977)。台中港特定區對中區未來人口分布之衝擊研究-以格林勞利模型預測其衝擊並驗證成長中心理論(碩士論文)。國立中興大學都市計劃研究所。
林韋宏、彭建文、林子欽(2003)。住宅屬性對空屋形成機率影響之研究—以台北市為例。住宅學報,12(2),91-107。
林楨家、馮正民、黃麟淇(2005)。臺灣高速鐵路系統對地方發展之影響預測。運輸計劃季刊,34(3),391–412。
梁紹芳(2019)。捷運對都會區内人口產業分布之影響一台北捷運實證研究(碩士論文)。國立政治大學地政學系研究所。
連經宇(2003)。應用模糊語意方法與不連續選擇理論建立家戶購屋選擇行為模式之研究(博士論文)。國立成功大學都市計劃學系碩博士班。
連經宇、陳彥仲(2005)。結合模糊語意尺度法與不連續選擇理論建立家戶住宅消費選擇行爲模式之研究。都市與計劃,32(1),57-81。
陳佐瑲(2000)。空間互動模型中可及性變數之敏感度分析(碩士論文)。國立成功大學都市計劃研究所。
陳彥仲(1997)。住宅選擇之程序性決策模式。住宅學報,24(2),193-209。
陳彥仲(1998)。對多項Logit模型參數指定方式之比較分析。交大管理學報,18(2),171-185。
陳彥仲、陳佳欣、吳俊賢(2004),家戶之住宅選擇模型與住宅之家戶競爭模型實證比較分析,住宅學報,13(1):1-13。
陳春志(2008)。影響台灣地區都市人口密度空間變化因素之探討(博士論文)。國立成功大學都市計劃學系碩博士班。
陳淑美 & 張金鶚(2003)。台北縣市家戶遷移行為與居住品質變遷之實證研究(會議論文)。政治大學,臺北。
黃書禮、李盈潔、李叢楨、周素卿、林子倫、張昱諄、張學聖、葉佳宗、詹士樑、蔡育新(2018)。接軌「都市化與環境變遷」國際研究—台灣研究議題。台灣土地研究,21(2),93-110。
楊龍士、江宛瑛(1993)。影響居住區位選擇指標之建立。規劃學報,20,71-86。
葉士僑(2005)。就業機會與地區人口遷移之相互影響:以台灣地區實證及分析(碩士論文)。國立成功大學都市計劃研究所。
潘進堂(1986)。土地使用與交通運輸整合之研究-以基隆市為個案(碩士論文)。國立中興大學都市計劃研究所。
盧曉櫻、劉至剛(2014)。民用航空運量變化對機場經濟效益與環境成本之影響-以臺北國際航空站為例。航運季刊,23(2),1-17。
謝蕴貞(1995)。新市鎮工業引進對人口成長之影響-以林口新市鎮製造業發展為例(碩士論文)。淡江大學建築(工程)學系研究所。
戴君穎(2022)。臺北市鄰里公園特徵對地區社會經濟影響之時空研究(碩士論文)。國立成功大學都市計劃研究所。
Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge University Press.
United Nations, Department of Economic and Social Affairs, Population Division. (2018). World urbanization prospects: The 2018 revision. United Nations.
辛晚教(1982)。都市及區域計畫。中國地政研究所。
施鴻志(2003)。都市交通計畫的理論與實務。國立編譯館。
章英華、蔡勇美(1997)。台灣的都市社會。巨流圖書出版公司。
馮正民、林楨家(2000)。都市及區域分析方法(第二版)。建都文化事業。
謝潮儀(1995)。計量方法與都市土地使用模型。茂榮圖書有限公司。
中華民國行政院(2018)。生活圈道路交通系統建設計畫(公路系統)8 年(104~111)計畫(第二次修正)(核定本)(技術報告)。
內政部不動產資訊平台(2024)。113 年第2季房價負擔能力指標統計成果(政府報告)。
台南市政府(2019)。變更臺南市主要計畫(第五次通盤檢討)(第二階段)案(政府報告)。
台南市政府主計處(2023)。110 年臺南市工業及服務業普查初步統計結果(政府統計報告)。
台南市政府捷運工程處(2023)。台南市先進運輸(大眾運輸)系統第一期藍線建設及周邊土地開發計畫(技術報告)。
台南市政府都市發展局(2021)。南科特定區開發推動報告(技術報告)。
交通部運輸研究所(2012)。公路公共運輸發展政策推動效益之評估與回饋-運具選擇行為變動之分析及決策支援系統建置(2/2)期末報告(技術報告)。
交通部運輸研究所(2020)。南臺區域整體運輸規劃系列研究(1/2)—旅次特性調查分析(技術報告)。
南部科學園區(2024)。南部科學園區 2023 年年報(年度報告)。
中華民國統計資訊網(2021)。行業統計分類第11次修正。檢自https://www.stat.gov.tw/StandardIndustrialClassificationContent.aspx?n=3144&sms=11195&RID=11&PID=Qw==&Level=1
賴宗裕(2022年4月8日)。在迷霧中獨走的房價。國立政治大學不動產研究中心。檢自 https://rer.nccu.edu.tw/article/detail/2208065405673