簡易檢索 / 詳目顯示

研究生: 宋奇檠
Sung, Chi-Ching
論文名稱: 合併變異數縮減技術於完全連續選擇程序
Integrated Variance Reduction Strategies in Fully Sequential Selection Procedures
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 51
中文關鍵詞: 排序和選擇程序控制變量條件期望估計法事後分層法合併變異縮減技術
外文關鍵詞: Variance Reduction Technique, Fully Sequential Procedure, Control Variates, Simulation Optimization
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系統模擬包含的應用領域十分廣泛,當遇到不確定性以及擁有隨機變因的問題時,
    均可以使用模擬來進行分析,而在決策者面對模擬最佳化問題時,若問題維度不大,則
    可使用排序與選擇程序使得在一信心水準下,正確選擇最佳或近似最佳系統使決策者參
    考; 然而排序與選擇程序只適用系統個數較小的前提下,若系統之績效值變異程度過
    大,將影響程序執行速度,使得抽樣成本及運算時間提高。 因此透過統計中的變異縮減
    技術,利用替代估計量取代一般的樣本平均數估計量,使其樣本變異數將較原本變異數
    更低,達到變異縮減之效果。 變異縮減技術可分之為兩種:輸入型技術及輸出型技術,
    前者是使用相關性的輸入變量,藉此產生具有正或負相關的輸出值;而後者是使用輔助
    變數試圖修正輸出值,使得變異數下降。 而本研究將控制變量、條件期望法、事後分層
    法等三種不同的變異縮減技術結合所形成的合併變異縮減技術,期望能優於單獨使用變
    異縮減技術之效益,以求達到更顯著的變異縮減效果。
    本研究建立控制變量結合條件期望法、控制變量結合事後分層法等兩種合併變異縮
    減技術之模型,並將推算所得之估計量以及變異數估計量應用於完全連續選擇程序中,
    且在滿足信心水準下,比較原始程序以及合併型程序的優劣,並將程序用於一範例加
    以實驗比較。 歸納出合併之變異縮減技術之效果皆可優於單一使用,其中在控制變量
    與條件期望法合併的部分,在原本的控制變量外,再選擇一個條件變量 (Conditioning
    Variate),其可同時對觀察值與控制值取條件觀察值,其合併效果最佳。 而在控制變量
    結合事後分層法的部分,只要選擇與觀察值具有相關性的分層變數,而此分層變數與控
    制值獨立下,能獲得最佳之合併效果。

    Simulation optimization can help us to identify the best systems from all candidate
    systems. In this paper, we propose two estimators that combine three different variance
    reduction techniques, and use the combined estimators in Fully Sequential Selection
    Procedures (FSP). First we combine Control Variates (CV) with Condition Expectation
    (CE). The idea is to use a condition variable to replace the origin output or the variable
    use in CV with condition expectation. So there are three schemes. And with the case
    where the condition variable may not be fully used, we also show that partial condition
    expectation can be used as ordinary CE . Second, we combine Control Sum (CS) with
    Post-stratified Sampling (PS). The idea is like ordinary PS, but we use CS to estimate
    each stratum and to combine each stratum with its weight as in ordinary PS. Then we
    replace the ordinary estimator used in FSP with these combined estimators. Empirical
    results show that the procedure using CE to replace both the output and control variates
    has the most significant reduction effects in CV+CE, and the reduction effects are
    related to the correlation between output, control variables, and the condition variable.
    When the condition variable can only replace the partial estimators, it still works better
    than the ordinary CV, in CS+PS, if we use a stratified variable that is independent to
    control variable. Combining the two techniques can obtain a guarantee benefit from a
    single method.

    目 錄 中文摘要 i 英文延伸摘要 ii 誌謝 viii 目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 研究流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章 文獻回顧與基本模型介紹 4 2.1 變異縮減技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 控制變量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 條件期望估計法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 事後分層法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 合併變異縮減技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 CV+CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 CV+CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 CV+PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 運用合併變異縮減技術之排序與選擇程序 . . . . . . . . . . . . . . . . . 17 2.4 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第三章 研究方法 20 3.1 CV+CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 CS+PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 完全連續選擇程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 CV+CE 程序步驟 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 CV+PCE 程序步驟 . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.3 CS+PS (without Variance updating)程序步驟 . . . . . . . . . . . 31 3.3.4 CS+PS (with Variance updating)程序步驟 . . . . . . . . . . . . . 32 3.3.5 CV (with Variance updating)程序步驟 . . . . . . . . . . . . . . . 33 第四章 實驗設計與分析 35 4.1 實驗評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 CV+CE 實驗設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 CV+PCE 部分條件期望法 . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 CS+PS 實驗設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.5 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 第五章 結論與未來研究方向 44 5.1 研究總結與建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.1 CV+CE 完全連續選擇程序 . . . . . . . . . . . . . . . . . . . . . 44 5.1.2 CS+PS 完全連續選擇程序 . . . . . . . . . . . . . . . . . . . . . 45 5.2 未來研究方向 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 參考文獻 47

    Anonuevo, R. and B. L. Nelson. (1988) Automated stimation and Variance Reduction via Control Variates for Infinite-Horizon Simulations. Computers and Operations Research,15, 447–456.
    Avramidis, A. N. and J. R. Wilson. (1996) Integrated Variance Reduction Strategies for
    Simulation. Operations Research, 44, 327–346.
    Anderson, T.W. An Introduction to Multivariate Statistical Analysis, John Wiley and
    Sons, New York, 2003.
    Bauer, K. W., S. Venkatraman, and J. R. Wilson. (1987) Estimation Procedures Based on
    Control Variates with Known Covariance Matrix. Proceddings 1987 Winter Simulation
    Conference, 334–341.
    Bauer, K. W. and J. R. Wilson. (1992) Control-Variate Selection Criteria. Naval Research
    Logistics, 39, 307–321.
    Bechhofer, R. E. (1954) A Single-Sample Multiple Decision Procedure for Ranking Means
    of Normal Populations with known Variances. The Annals of Mathematical Statistics,25,
    16–39.
    Casella, G., & Berger, R. L. (2002). Statistical Inference . Pacific Grove, CA: Duxbury.
    Billingsley, P. (1999) Convergence of Probability Measures. John Wiley & Sons, New
    York, NY.
    Cheng, R. C. H. (1982) The Use of Antithetic Variates in Computer Simulations. Journal
    of the Operational Research Society, 3, 229–237.
    Fishman, G. S. and B. D. Huang. (1983) Antithetic Variates Revisited. Communications
    of the ACM, 26, 964–971.
    Glasserman, P. (2003). Monte Carlo Methods In Financial Engineering . Springer Sci-
    47
    ence & Business Media.
    Gupta, S.S. (1956) On a Decision Rule for a Problem in Ranking Means. Ph.D. dissertation
    Institute of Statistics, University of North Carolina, Chapel Jill, NC.
    Grant, F. H. (1983). Hybrid variance reduction techniques using antithetic sampling,
    control variates and stratified sampling. Computers & Industrial Engineering, 7(2),
    159-169.
    Hammersley, J.M. and K. W. Morton. (1956) A New Monte Carlo Technique: Antithetic
    Variates. Mathematical Proceedings of the Cambridge Philosophical Society,
    52, 449–475.
    Kim, S.-H. and B. L. Nelson. (2001) A Fully Sequential Procedure for Indifference-Zone
    Selection in Simulation. ACM Transactions on Modeling and Computer Simulation,
    11, 251–273.
    Kim, S.-H. and B.Ł. Nelson. (2006)”On the Asymptotic Validity of Fully Sequential
    Selection Procedures for Steady-State Simulation,” Operations Research, 54, 475-488.
    Kwon, C. and J. D. Tew. (1994) Strategies for Combining Antithetic Variates and Control
    Variates in Designed Simulation Experiments. Management Science, 40, 1021–1034.
    L’Ecuyer, P., & Buist, E. (2008). On the Interaction Between Stratification and Control
    Variates, with Illustrations In a Call Centre Simulation. Journal of Simulation, 2(1),
    29-40.
    L’Ecuyer, P., & Buist, E. (2006). Variance reduction in the Simulation of Call Centers.
    In Proceedings of the 38th conference on Winter simulation (pp. 604-613). Winter
    Simulation Conference.
    Lavenberg, S. S. and P. D. Welch. (1981) A Perspective on the Use of Control Variables
    to Increase the Efficiency of Monte Carlo Simulations. Management Science, 27,
    48
    322–335.
    Langford, E., Schwertman, N., and Owens, M. (2001). Is the Property of Being Positively
    Correlated Transitive? The American Statistician, 55(4), 322-325.63
    Lehmann, E. L. (1966) Some Concept of Dependence. Annals of Mathematical Statistics,
    37, 1137–1153.
    Little, R. J. (1993). Post-stratification: a modeler’s perspective. Journal of the American
    Statistical Association, 88(423), 1001-1012.
    Lesnevski, V., B. L. Nelson, and J. Staum. (2007) Simulation of Coherent Risk Measures
    Based on Generalized Scenarios. Management Science, 53, 1756–1769.
    Mckay, M. D., R. J. Beckman, and W. J. Conover. (1979) A Comparison of Three Methods
    for Selecting Values of Input Variables in the Analysis of Output from a Computer
    Code. Technometrics, 21, 239–245.
    Minh, D. L. (1989). A Variant of the Conditional Expectation Variance Reduction Technique
    and its Application to the Simulation of the GI/G/1 queues. Management science,
    35(11), 1334-1340.
    Nelson, B. L. (1989) Batch Size Effects on the Efficiency of Control Variates in Simulation.
    European Journal of Operational Research, 43, 184–196.
    Nelson, B. L. (1990) Control-Variate Remedies. Operations Research, 38, 974–992.
    Nelson, B. L. and J. C. Hsu. (1993) Control-Variate Models of Common Random Numbers
    for Multiple Comparisons with the Best. Management Science, 39, 989–1001.
    Nelson, B. L., J. Swann, D. Goldsman, and W. Song. (2001) Simple Procedures for
    Selecting the Best Simulated System when the Number of Alternatives is Large. Operations
    Research, 49, 950–963.
    Nelson, B. L. and J. Staum. (2006) Control Variates for Screening, Selection, and Esti-
    49
    mation of the Best. ACM Transactions on Modeling and Computer Simulation, 16,
    52–75.
    Owen, A. B. (1992) A Central Limit Theorem for Latin Hypercube Sampling. Journal of
    the Royal Statistical Society. Series B Methodological, 54, 541–551.
    Rinott, Y. (1978) On Two-Stage Selection Procedures and Related Probability-Inequalities.
    Communications in Statistics–Theory and Methods, A7, 799–811.
    Ripley, B. D. (1987) Stochastic Simulation. John Wiley & Sons, New York, NY.
    Ross, S. M., & Lin, K. Y. (2001). Applying variance reduction ideas in queuing simulations.
    Probability in the Engineering and Informational Sciences, 15(04), 481-494.
    Sabuncuoglu, I., M. M. Fadiloglu, and S. Celik. (2008) Variance Reduction Techniques:
    Experimental Comparison and Analysis for Single Systems. IIE Transactions, 40,
    538–551.
    Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling.
    Technometrics, 29, 143–151.
    Sethi, V. K. (1963). A note on optimum stratification of populations for estimating the
    population means. Australian Journal of Statistics, 5(1), 20-33.
    Tong, Y. L. (1980) Probability Inequalities in Multivariate Distribution. Academic Presss,
    New York.
    Tsai, S. C., B. L. Nelson, and J. Staum. (2009) Combined Screening and Selection of the
    Best with Control Variates. Advancing the Frontiers of Simulation: A Festschrift in
    Honor of George S. Fishman, Kluwer, 263-289.
    Tsai, S. C. and B. L. Nelson. (2010) Fully Sequential Selection Procedures with Control
    Variates. IIE Transactions, 71-82.
    Tsai, S. C., and Kuo, C. H. (2012). Screening and selection procedures with control
    50
    variates and correlation induction techniques. Naval Research Logistics (NRL), 59(5),
    340-361.
    Wilson, J. R., and Pritsker, A. A. B. (1984). Experimental evaluation of variance reduction
    techniques for queueing simulation using generalized concomitant variables.
    Management Science, 30(12), 1459-1472.
    Wilson, J. R., and Pritsker, A. A. B. (1984). Variance reduction in queueing simulation
    using generalized concomitant variables. Journal of Statistical Computation and
    Simulation, 19(2), 129-153.
    Yang, W. N. and B. L. Nelson. (1991) Using Common Random Numbers and Control
    Variates in Multiple-Comparison Procedures. Operations Research, 39, 583–591.
    Yang, W. N. and B. L. Nelson. (1992) Multivariate Batch Means and Control Variates.
    Management Science, 38, 1415–1431.
    Yang, W. N. and W. W. Liou. (1996) Combining Antithetic Variates and Control Variates
    in Simulation Experiments. ACM Transactions on Modeling and Computer Simulation,
    6, 243–260.

    無法下載圖示 校內:2021-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE