| 研究生: |
李敦弘 Lee, Tun-Hung |
|---|---|
| 論文名稱: |
以主流道入口和側壁形狀的最佳化來增進光流體分光器的效能 Enhancing the performance of optofluidic beam splitters based on optimization of inlet and sidewall shapes of main channel |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 微光流體分光器 、折射率梯度 、光追跡 、田口法 、基因演算法 |
| 外文關鍵詞: | optofluidics, beam splitter, gradient refractive index, optimization, transmission efficiency |
| 相關次數: | 點閱:138 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討一具有三維入口流道及圓弧形側流道壁的微光流體分光器,它會在主流道內產生漸進式的折射率梯度,引導進入主流道的光線往兩側前進,達到分光的功能。本研究使用氯化鈣水溶液(A,核心流體)及去離子水(B,包覆流體)作為流道內的工作流體,將流體由左右對稱的六個入口注入流道內,其中外圍的四個入口注入的是去離子水,包圍由中央注入口注入的氯化鈣水溶液,在主流道匯流後包覆流體會包覆住核心流體,形成中間高兩邊低的折射率分佈,由於注入口為左右對稱,進入主流道的光線會朝兩側高折射率區域前進,達到分光的效果,同時可以由控制入口流率的方式,改變流道內的折射率分佈,使進入流道內的光線產生不同的分光角。本研究使用ANSYS Fluent數質模擬軟體模擬流道內的速度場和濃度場,再以自行寫作的C++程式進行光追跡,模擬光線穿過流道時的軌跡。接著對流道的幾何以及流率參數進行最佳化,選定的7個參數如下,流體A入口流道寬度 、深度 、後段主流道長度 及A、B流體匯流處與主流道圓弧形流道壁端點距離 、入口總流率 、B流體1號入口和B流體流率的流率比 及A流體流率和總流率的流率比 ,先以田口法評估各項參數對分光器分光角和傳輸效率的影響程度,在經過程式模擬後,發現流率參數對表現的影響較大,並且各項參數對於分光角和傳輸效率的影響為相反,因此接著以基因演算法進行多目標最佳化,尋求最佳的參數組合,在以模擬驗證基因演算法的結果後,確認基因演算法能夠取得優於田口法的最佳化結果。
In this work, we investigate a micro optofluidics beam splitter, which forms gradient refractive index (GRIN) inside main channel to split the incident beam into two beams. The beam splitter consists of inlet channel, main channel with curved wall and outlet channel. Calcium chloride solution ( ) and deionized water( ) are used as the core and the cladding liquid, respectively. They are pumped into the channel through inlet channels with unequal height, so the cladding liquid would wrap around the core liquid to form GRIN in the main channel, which will split and focus the incident beams into two beams. ANSYS Fluent is used to simulate the concentration field inside the channel and Self-developed ray tracing code is employed to simulate light propagation. Different geometry and flow parameters will affect the transmission efficiency and the split angle. Genetic algorithm and the Taguchi method are used to optimize these parameters to achieve big split angle with good transmission. Response surface method (RSM) and radial basis function (RBF) are used to create surrogate model for genetic algorithm optimization. We find the following trends from simulation results. (i) The inlet channel depth ratio has great influence on both split angle and transmission efficiency of the beam splitter. (ii) Flow rate parameters have greater influence on the performance of the beam splitter than geometry parameter. (iii) The RBF method combined with genetic algorithm generates better optimization result than taguchi method does.
[1] V. R. Horowitz, D. D. Awschalon, S. Pennathur, “Optofluidics: field or technique?” Lab on a Chip, vol. 8, no.11, pp. 1856-1863, 2008.
[2] A. Schap, Y. Bellouard, T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomedical Optics Express, vol. 2, no. 3 , pp. 658-664, 2011.
[3] C. C. Stemple, S. V. Angus, T. S. Park, J.-Y. Yoon, “Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood,” Journal of Laboratory Automation, vol. 19, no. 1, pp. 35-41, 2014.
[4] H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Analytical Chemistry, vol .83, no. 17, pp. 6641-6647, 2011.
[5] G. Zheng, S. A. Lee, S. Yang, C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab on a Chip, vol. 10, no. 22, pp. 3125-3129, 2010.
[6] A. H. J. Yang, D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab on a Chip, vol. 10, no. 6, pp.769-774, 2010.
[7] Y. C. Seow, S. P. Lim, H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab on a Chip, vol. 12, no. 19, pp. 3810-3815, 2012.
[8] K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Scientific Reports, vol. 4, 6378 (4 pages), 2014.
[9] D. Erickson, D. Sinton, D. Psaltis, “Optofluidics for energy applications,” Nature Photonics, vol. 5, no. 10, pp. 583-590, 2011.
[10] L. Lei, N. Wang, X .M. Zhang, Q. Tai, D. P. Tsai, H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics, vol.4, 043004 (13 pages), 2010.
[11] C. Song, N.-T. Nguyen, S.-H. Tan, A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab on a Chip, vol. 9, pp. 1153-1308, 2009.
[12] X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. J. Juluri, T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab on a Chip, vol. 9, no. 14, pp. 2050-2058, 2009.
[13] Y. Yang, L. K. Chin, J. M. Tsai, D. P. Tsai, N. I. Zheludev, A. Q. Liu, “Transformation optofluidics for large-angle light bending and tuning,” Lab on a Chip, vol. 12, no. 19, pp. 3785-3790, 2012.
[14] Y. C. Seow, S. P. Lim, H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab on a Chip, vol. 12, no.19, pp. 3810-3815, 2012.
[15] H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab on a Chip, vol. 16, no. 9, pp. 1617-1624, 2016.
[16] L. Li, J.-H. Wang, Q.-H. Wang, S.-T. Wu, “Displaceable and focus-tunable electrowetting optofluidic lens,” Optics Express, vol. 26, no. 20, pp. 25839-25848, 2018.
[17] H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab on a Chip, vol. 17, no. 7, pp. 1280-1286, 2017.
[18] H. T .Zhao, Y. Zhang, P. Y. Liu, P. H. Yap, W. Ser, Q. Liu, “Chemical reaction monitoring via the light focusing in optofluidic waveguides,” Sensors and Actuators B: Chemical, vol. 280, pp. 16-23, 2019.
[19] J. W. Parks, H. Schmidt, “Flexible optofluidic waveguide platform with multi-dimensional reconfigurability,” Scientific Reports, vol. 6, 33008, 2016.
[20] T.-Y. Lin, “Optofluidic splitter generating large-angle and vertically condensed beams,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[21] Y.-C. Chen, “Improving splitter transmission by optimizing the shape and flow parameter of a micro optofluidic beam splitter,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2017.
[22] Y.-C. Chiang, “Performance of micro optofluidic beam splitter enhanced by modifying inlet geometry and adjusting inlet flow rates,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2018.
[23] P. A. Lyons, J. F. Riley, “Diffusion coefficients for aqueous solutions of calcium chloride and cesium chloride at ,” Journal of the American Chemical Society, vol. 76, pp. 5216-5220, 1954.
[24] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed. Boca Raton, US: CRC Press, 2004.
[25] M. Rasouli, A. A. Mehrizi, M. Goharimanesh, A. Lashkaripour, S. R. Bazaz, “Multi-criteria optimization of curved and baffle-embedded micromixers for bio-applications,” Chemical Engineering and Processing - Process Intensification, vol. 132, pp. 175-186, 2018.
[26] H.-H. Lee, Taguchi methods: Principles and Practices of Quality Design, 2nd ed. New Taipei City, Taiwan: Gau Lih Book, 2004.
[27] A. Afzal, K.-Y. Kim, “Multi-objective optimization of a passive micromixer based on periodic variation of velocity profile,” Chemical Engineering Communications, vol. 202, pp. 322-331, 2015.
[28] A. Afzal, K.-Y. Kim, “Multiobjective optimization of a micromixer with convergent–divergent sinusoidal walls,” Chemical Engineering Communications, vol. 202, pp. 1324-1334, 2015.
[29] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, 2002.
[30] M. Born, E. Wolf, Principles of Optics, 7th ed. Cambridge, UK: Cambridge University Press, 1999.
[31] A. Sharma, D. V. Kumar, A. K. Ghatak, “Tracing rays through graded-index media - a new method,” Applied Optics, vol. 21, pp. 984-987, 1982.
[32] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19-26, 1980.
[33] S.Q. Mawlud, N.Q. Muhamad, “Theoretical and Experimental Study of a Numerical Aperture for Multimode,” Chinese Physics Letters, vol. 29, no. 11, 114217, 2012.
[34] A. Parent, M. Morin, P. Lavine, “Propagation of super-Gaussian field distributions,” Optical and Quantum Electronics, vol.24, pp.1071-1079, 1992.
[35] A. Sharma, A. K. Ghatak, “Ray tracing in gradient-index lenses: computation
of ray–surface intersection,” Applied Optics, vol. 25, no. 19, pp. 3409-3412,
1986.
[36] M. F. Modest, Radiative Heat Transfer, 3rd ed. Boston, US: Academic Press, 2013.
[37] A. Nealen, “An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Technische Universität Darmstadt, Tech. Rep, 2004, URL: http://www.nealen.com/projects.
[38] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,1975.
[39] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891-923, 1998.
[40] T. Most, C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.