| 研究生: |
陳加彬 Chen, Jia-Bin |
|---|---|
| 論文名稱: |
石墨烯與石墨烯接觸電阻之研究 A study of graphene to graphene contact resistance |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 石墨烯 、石墨烯轉移 、接觸電阻 |
| 外文關鍵詞: | graphene, graphene transfer, contact resistance |
| 相關次數: | 點閱:70 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究石墨烯與石墨烯的接觸電阻。我們使用高溫退火碳/鎳薄膜製作兩個2 mm寬的石墨烯線條,藉由兩次轉移,將石墨烯重疊成十字的圖案,然後量測這重疊的石墨烯之線電阻與接觸電阻。
我們剛開始使用非轉移的方式進行石墨烯的堆疊,但不成功,因為此方式都會產生石墨烯的裂痕及破洞。之後,我們改用文獻上常使用的傳統轉移方式去堆疊石墨烯線條,雖然可以成功地重疊石墨烯成十字的圖案,但是我們發現2 mm寬的石墨烯線條其邊緣的石墨烯厚度都會比中間的石墨烯厚,且樣品在第二次轉移浸泡水時,線條邊緣之石墨烯都會被漂浮到水面。這肇因源自於不均勻的鎳薄膜形成不均勻的石墨烯,線條外圍之石墨烯較厚因此有較差的附著力,造成外圍的石墨烯被漂浮到水面。
我們最後利用膠帶與改善遮光罩黏貼方式來改善鎳蒸鍍之均勻度,並使用均勻的鎳薄膜製作出均勻的2 mm寬石墨烯線條。經二次轉移,最後製作出十字重疊的石墨烯結構,這些 2 mm寬的石墨烯,其平均線電阻為2.275 kΩ/mm,平均接觸電阻為1.03 kΩ/mm2。
In this thesis, we investigated graphene to graphene contact resistance. Two 2-mm-wide graphene stripes were fabricated using high temperature annealing of patterned C/Ni thin films. We transferred one graphene stripe at a time on a SiO2 coated silicon wafer substrate such that the stripes cross each other. The individual stripe’s resistance and the contact resistance were measured from the fabricated samples.
At beginning, non-transfer method to stack the graphene stripes was attempted. Unfortunately, it caused lot defects such as cracks and pin holes (or missing graphene). We then use traditional graphene transfer technique to fabricate the samples. The transfer was successful, but the thickness of graphene at the stripe’s edge is thicker than the central area. Furthermore, graphene at the stripe’s edge area floated off easily when the sample soaked in the DI-water for the second transfer. The reason for graphene floated off is that a non-uniform Ni thin film causes non-uniform graphene growth across the stripe. As a result, thicker graphene was grown at the stripe’s edge which had a weaker adhesion and caused the float off.
Finally, the non-uniform Ni film was improved by a better Ni deposition method with a scotch-tape or a patterned shadow mask and the synthesized graphene stripes were uniform. The average line resistance of the 2-mm wide graphene stripe is 2.275 kΩ/mm and the average contact resistance is 1.03 kΩ/mm2.
[1] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “of Monolayer Graphene,” Science (80-. )., vol. 321, no. July, pp. 385–388, 2008.
[2] R. R. Nair, P. Blake, a. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and a. K. Geim, “Fine Structure Constant Defines Visual Transperency of Graphene,” Science (80-. )., vol. 320, no. June, p. 2008, 2008.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004.
[4] A. K. Geim, K. S. Novoselov, and P. Bimonthly, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,” pp. 155–162, 2011.
[5] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett., vol. 7, no. 12, pp. 3840–3844, 2007.
[6] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y. L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, “Metal-catalyzed crystallization of amorphous carbon to graphene,” Appl. Phys. Lett., vol. 96, no. 6, pp. 4–6, 2010.
[7] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, no. 11, 2008.
[8] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon N. Y., vol. 45, no. 10, pp. 2017–2021, 2007.
[9] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett., vol. 9, no. 12, pp. 4268–4272, 2009.
[10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science (80-. )., vol. 324, no. 5932, pp. 1312–1314, 2009.
[11] Z. Juang, Y. Zhong, F. Chen, and L. Li, “Substrates by Chemical Vapor Deposition,” Nano Lett., no. 11, pp. 3612–3616, 2011.
[12] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano, vol. 4, no. 1, pp. 43–48, 2010.
[13] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
[14] D. Makarov, M. Melzer, D. Karnaushenko, and O. G. Schmidt, “Shapeable magnetoelectronics,” Appl. Phys. Rev., vol. 3, no. 1, 2016.
[15] D. Kondo, S. Sato, K. Yagi, N. Harada, M. Sato, M. Nihei, and N. Yokoyama, “Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes,” Appl. Phys. Express, vol. 3, no. 2, 2010.
[16] J.-H. Kim, Y. Liang, and S. Seo, “Patchable thin-film strain gauges based on pentacene transistors,” Org. Electron., vol. 26, pp. 355–358, 2015.
[17] G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla, “Transparent and conducting electrodes for organic electronics from reduced graphene oxide,” Appl. Phys. Lett., vol. 92, no. 23, pp. 3–5, 2008.
[18] J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep., vol. 5, p. 12305, 2015.
[19] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9–10, pp. 351–355, 2008.
[20] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, 2009.
[21] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science (80-. )., vol. 324, no. 5932, pp. 1312–1314, 2009.
[22] D. Ho Mer Lin, D. Manara, P. Lindqvist-Reis, T. Fanghänel, and K. Mayer, “The use of different dispersive Raman spectrometers for the analysis of uranium compounds,” Vib. Spectrosc., vol. 73, pp. 102–110, 2014.
[23] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved raman spectroscopy of single- and few-layer graphene,” Nano Lett., vol. 7, no. 2, pp. 238–242, 2007.
[24] K. S. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes.,” Nature, vol. 457, no. 7230, pp. 706–10, 2009.
[25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 1–4, 2006.
[26] R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc., vol. 57, no. 2, pp. 163–176, 2011.
[27] D. Wang, H. Tian, Y. Yang, D. Xie, T.-L. Ren, and Y. Zhang, “Scalable and direct growth of graphene micro ribbons on dielectric substrates.,” Sci. Rep., vol. 3, no. August 2015, p. 1348, 2013.
[28] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
[29] S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “Ultrastrong adhesion of graphene membranes.,” Nat. Nanotechnol., vol. 6, no. 9, pp. 543–546, 2011.
[30] M. Her, R. Beams, and L. Novotny, “Graphene transfer with reduced residue,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 377, no. 21–22, pp. 1455–1458, 2013.
[31] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.,” Nat. Mater., vol. 10, no. 6, pp. 443–9, 2011.