簡易檢索 / 詳目顯示

研究生: 吳政毅
Wu, Cheng-Yi
論文名稱: 使用碳氫燃料之含凹槽超音速燃燒流場數值模擬分析
Numerical Analyses of Supersonic Combustion Flows with Combustor Cavity Using Hydrocarbon Fuels
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 117
中文關鍵詞: 超燃衝壓引擎數值模擬凹槽碳氫燃料
外文關鍵詞: Scramjet, Numerical Simulation, Cavity, Hydrocarbon Fuels
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音速燃燒衝壓引擎其燃燒流場具有高溫及高速燃燒等複雜之物理問題,是值得研究探討的課題。由於超音速燃燒流場之實驗量測有其困難度並存在危險性,使用數值模擬方法來分析其流場及燃燒特性是有其必要性。以往在超音速燃燒衝壓引擎之研究中,多以氫氣作為燃料,但近年來使用碳氫燃料之超音速燃燒流場研究則日亦漸增且受到重視。因此,本文將使用ANSYS之CFD軟體FLUENT進行模擬,紊流模型採用SST k-ω搭配層流有限速率燃燒模型。本文首先針對超音速凹槽流場進行三維數值模擬,分析使用不同碳氫燃料對超燃衝壓引擎整體燃燒性能之影響,其模擬結果顯示出在相同質量流率之下,乙烯相較於甲烷具有點火延遲較短,且整體流場壓力及溫度較高。第二部分針對使用液態碳氫燃料之超音速凹槽流場進行模擬,探討燃料注射位置對超燃衝壓引擎整體燃燒性能之影響,結果指出燃料採用中心注射之方式相較於燃料從壁面注射,中心注射可使燃料與氧化劑混合效率更好,導致整體之壓力皆有所提升,且壓力提升位置比壁面注射更加提前。

    Supersonic combustion flow field is complicated, including the interaction between the shock wave and the boundary layer, and the mixing and combustion of the injected fuel with air in the high-speed flow. Most of the previous studies for Scramjets have been focused on those using hydrogen as the fuel. Recently, the studies for the use of hydrocarbon fuels in supersonic combustion flow have increased and attracted more attention. Therefore, in the present study, the SST k-ω turbulence model has been adopted and the laminar finite-rate reaction model has been employed for the analysis of a supersonic reaction flow. The first part in the present study aims at the supersonic combustion flow over a cavity with a 3-D numerical simulation model. The results obtained from the present study show that by comparing the use of different gaseous fuels under the same mass flow rate, ethylene results in a shorter ignition delay, and higher chamber pressure and temperature than methane. The second part of the present paper investigates the supersonic combustion flow using liquid hydrocarbon fuels. The objective of the present study is to analyze different fuel injection position on scramjet combustion performance. It has been found that the overall pressure using the central injection is higher than that using the injection through the wall, and the pressure rise position of the former is closer to the chamber inlet than that of the latter. The results are attributed to the better mixing of fuel and oxidizer by the central injection.

    摘要 i Abstract iii 誌謝 v 目錄 vii 表目錄 x 圖目錄 xi 符號索引 xvi 第一章 緒論 1 §1.1 前言 1 §1.2 文獻回顧 2 §1.3 研究動機及目的 13 第二章 研究方法 15 §2.1 基本假設 15 §2.2 連續相-氣相流場統御方程式 16 §2.3 離續相-液相流場之統御方程式 20 §2.4 紊流模型 31 §2.5 邊牆函數 34 §2.6 燃燒化學模型 36 第三章 數值方法 40 §3.1 控制體積轉換之傳輸方程式 40 §3.2 壓力耦合求解器運算法則 41 §3.3 二階上風法 42 §3.4 連續相與離散相之耦合 42 §3.5 邊界條件 43 §3.6 鬆弛因子(Relaxation Factor) 43 §3.7 收斂標準 44 第四章 結果與討論 45 §4.1 結合凹槽之燃燒室流場入口條件與網格模型 46 §4.1.1 結合凹槽之燃燒室流場網格獨立測試 46 §4.1.2 結合凹槽之燃燒室之超音速冷流場分析 47 §4.1.3 結合凹槽之燃燒室之超音速燃燒反應流場分析 49 §4.1.4 比較使用不同氣態碳氫燃料之燃燒流場 50 §4.2 液態碳氫燃料結合凹槽之燃燒室流場入口條件與網格模型 51 §4.2.1 液態碳氫燃料結合凹槽之燃燒室流場網格獨立測試 52 §4.2.2 液態碳氫燃料結合凹槽之燃燒室之超音速冷流場分析 53 §4.2.3 液態碳氫燃料中心注射結合凹槽之燃燒室之超音速燃燒反應流場分析 54 第五章 結論與未來工作 60 參考文獻 63 圖表 67

    [1]Adela, B. Y. and R. K. Hanson, “Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow,” 27th International Symposium on Combustion, pp. 2173–2180, 1998.
    [2]Adela, B. Y. and R. K. Hanson, “Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview,” Journal of Propulsion and Power, Vol. 17, No. 4, pp. 869-877, 2001.
    [3]Bao, W., Y. Hu, Q. Yang, M. Wu, J. Chang, and D. Yu, “Combustion Characteristic Using O2-Pilot Strut in a Liquid-Kerosene-Fueled Strut-Based Dual-Mode Scramjet,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 0, No. 0, pp. 1-11,2012.
    [4]Gruber, M. R., R. A. Baurle, T. Mathur, and K. Y. Hsu, “Fundamental Studies of Cavity-Based Flame Holder Concepts for Supersonic Combustors,” Journal of Propulsion and Power, Vol. 17, No. 1, pp. 146-153, 2001.
    [5]Gruber, M. R., J. M. Donbar, C. D. Carter, and K. Y. Hsu, “Mixing and Combustion Studies Using Cavity-Based Flame-Holders in a Supersonic Flow,” Journal of Propulsion and Power, Vol. 20, pp. 769–778, 2004.
    [6]Kim, K. M., S. W. Beak, and C. Y. Han, “Numerical Study on Supersonic Combustion with Cavity-Based Fuel Injection,” International of Journal of Heat and Mass Transfer, Vol. 47, pp. 271-286, 2004.
    [7]林翰毅, 凹槽機構對超燃衝壓引擎流場之影響, 碩士論文, 國立成功大學 航空太空工程學系, 民國101年.
    [8]Neely, A. J., C. Riley, R. R. Boyce, and N. R. Mudford, “Hydrocarbon and Hydrogen-Fueled Scramjet Cavity Fameholder Performance at High Fight Mach Numbers,” 12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2003-6989, 2003.
    [9]Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, and N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame-Holder Scramjet,” AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference, pp. 1478-1485, 2005.
    [10]Liu, O. Z., J. F. Zou, Y. Zheng, Y. H. Cai, and Y. L. Hu, “Aviation Kerosene Supersonic Combustion in Dual-Mode Scramjet,” International Autumn Seminar on Propellants, Explosives and Pyrotechnics, pp. 487-491, 2007.
    [11]Tam, C. J., K. Y. Hsu, M. R. Gruber, and C. N. Raffoul, “Aerodynamic Performance of an Injector Strut for a Round Scramjet Combustor,” 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2007-5394, 2007.
    [12]Hsu, K. Y., C. D. Carter, M. R. Gruber, and T. Barhorst, “Experimental Study of Cavity-Strut Combustion in Supersonic Flow,” 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2007-5403, 2007.
    [13]Manna, P., R. Behera, and D. Chakraborty, “Liquid-Fueled Strut-Based Scramjet Combustor Design: A Computational Fluid Dynamics Approach,” Journal of Propulsion and Power, Vol.24, No.2, 2008.
    [14]Curran, E. T. and S. N. B. Murthy, “Scramjet Propulsion,” Progress in Astronautics and Aeronautics, Vol. 189, pp. 757-802, 2000.
    [15]Lewis, M. J., “Significance of Fuel Selection for Hypersonic Vehicle Range,” Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1214-1221, 2001.
    [16]Kush, E. A. and J. A. Schetz, “Liquid Jet Injection into a Supersonic Flow,” American Institute of Aeronautics and Astronautics Journal, Vol. 11, No. 9, pp. 1223-1224, 1973.
    [17]Rasmussen, C. C., J. F. Driscoll, K. Y. Hsu, J. M. Donbar, M. R. Gruber, and C. D. Carter, “Stability Limits of Cavity-Stabilized Flames in Supersonic Flow,” Proceedings of the Combustion Institute, Vol. 30, pp. 2825-2833, 2005.
    [18]Amati, V., C. Bruno, D. Simone, and E. Sciubba, “Exergy Analysis of Hypersonic Propulsion System: Performance Comparison of Two Different Scramjet Configurations at Cruise Conditions,” Energy, Vol. 33, pp. 116-129, 2008.
    [19]Lander, H. and A. C. Nixon, “Endothermic Fuels for Hypersonic Vehicles,” Journal of Aircraft, Vol. 8, No. 4, pp. 200–207, 1971.
    [20]Waltrup, P. J., “Upper Bounds on the Flight Speed of Hydrocarbon-Fueled Scramjet-Powered Vehicles,” Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1199-1204, 2001
    [21]Dufour, E. and M. Bouchez, “Computational Analysis of a Kerosene-Fueled Scramjet,” AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2001-2817, 2001.
    [22]Powell, O. A., J. T. Edwards, R. B. Norris, K. E. Numbers, and J. A. Pearce, “Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology (HyTech) Program,” Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1170-1176, 2001.
    [23]Yue, L. J. and G. Yu, “Numerical Simulation of Kerosene Spray in Supersonic Cross Flow,” Journal of Propulsion Technology, Vol. 25, No. 1, 2004.
    [24]Lefebvre, A. H., X. F. Wang, and C. A. Martin, “Spray Characteristics of Aerated-Liquid Pressure Atomizers,” Journal of Propulsion and Power, Vol. 4, No. 4, pp. 293-298, 1988.
    [25]Yu, G., J. G. Li, S. R. Yang, L. J. Yue, X. Y. Zhang, Y. Huang, and C. J. Sung, “Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2002-4279, 2002.
    [26]Arai, T. and J. A. Schetz, “Injection of Bubbling Liquid Jet from Multiple Injectors into a Supersonic Stream,” Journal of Propulsion and Power, Vol. 10, No. 3, pp. 382-386, 1994.
    [27]Lin, K. C., K. A. Kirkendall, P. J. Kennedy, and T. A. Jackson, ”Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows,” 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 99-2374, 1999.
    [28]Fan, X. J., G. Yu, J. G. Li, X. Y. Zhang, and C. J. Sung, “Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor,” Journal of Propulsion and Power, Vol. 22, No. 1, pp. 103-110, 2006.
    [29]Yue, L. J. and G. Yu, “Studies on Spray Characteristics of Barbotaged Atomizer,” Journal of Propulsion Technology, Vol. 24, No. 4, 2003.
    [30]Yu, G., J. G. Li, X. Y. Chang, L. H. Chen, and C. J. Sung, “An Experimental Study of Kerosene Combustion in a Supersonic Model Combustor Using Effervescent Atomization,” Proceedings of the Combustion Institute, Vol. 30, pp. 2859-2866, 2005.
    [31]Yu, G., J. G. Li, X. Y. Chang, L. H. Chen, and C. J. Sung, “Investigation of Kerosene Combustion Characteristics with Pilot Hydrogen in Model Supersonic Combustors,” Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1263-1272, 2001.
    [32]Balasubramanyam, M. S., C. P. Chen, and H. P. Trinh, “Evaporating Spray in Supersonic Streams Including Turbulence Effects,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-1338, 2006.
    [33]Wan, T., L. Chen, J. Wang, X. Fan, and X. Chang, “Computational Study of Supersonic Combustion Using Three Kerosene Reaction Mechanism Models,” Proceedings of the 13th Asian Congress of Fluid Mechanics, pp. 1126-1129, 2010.
    [34]Yu, G., J. G. Li, X. Y. Chang, L. H. Chen, and C. J. Sung, “Fuel Injection and Flame Stabilization in a Liquid-Kerosene-Fueled Supersonic Combustor,” Journal of Propulsion and Power, Vol. 19, No. 5, pp. 885-893, 2003.
    [35]Chakraborty, D., “Numerical Simulation of Liquid Fueled Scramjet Combustor Flow Fields,” International Journal of Hypersonics, Vol. 1, pp. 13-29, 2010.
    [36]Kumaran, K. and V. Babu, “Mixing and Combustion Characteristics of Kerosene in a Model Supersonic Combustor,” Journal of Propulsion and Power, Vol. 25, No. 3, pp. 583-592, 2009.
    [37]ANSYS-FLUENT 12.0, “ANSYS-FLUENT 12.0 Theory Guide,” ANSYS Inc, 2009.
    [38]Ranz, W. E. and W. R. Marshall, “Evaporation from Drops, Part I,” Chemical Engineering Progress, Vol. 18, No. 3, pp. 141-146, 1952.
    [39]Ranz, W. E. and W. R. Marshall, “Evaporation from Drops, Part II,” Chemical Engineering Progress, Vol. 18, No. 4, pp. 173-180, 1952.
    [40]鄭瑞圻, 使用液態碳氫燃料之超音速燃燒流場模擬分析, 碩士論文, 國立成功大學 航空太空工程學系, 民國102年.
    [41]Drummond, P. J., R. C. Rogers, and M. Y. Hussaini, “A Numerical Model for Supersonic Reacting Mixing Layers,” Computer Methods in Applied Mechanics and Engineering, Vol. 64, pp. 39-60, 1987.
    [42]Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” URL: http://www.me.berkeley.edu/gri_mech, 1999.
    [43]Manion, J., R. Huie, R. Levin, D. J. Burgess, V. Orkin, W. Tsang, W. McGivern, J. Hudgens, V. Knyazev, and D. Atkinson, “NIST Chemical Kinetics Database,” NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.5 Data Version 2012.02, URL: http://kinetics.nist.gov, 2012.
    [44]Brindle, A., R. R. Boyce, A. J. Neely, “CFD Analysis of an Ethylene-Fueled Intake-Injection Shock-Induced-Combustion Scramjet Configuration,” AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technology, AIAA 2005-3239, 2005.
    [45]Iannetti, A. C. and J. P. Moder, “Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow,” 48th Aerospace Sciences Meeting Sponsored by the American Institute of Aeronautics and Astronautics, NASA/TM-2010-216735, 2010.

    下載圖示 校內:2015-08-13公開
    校外:2015-08-13公開
    QR CODE