簡易檢索 / 詳目顯示

研究生: 賴友萱
Lai, Yu-Hsuan
論文名稱: 利用斑馬魚動物模式評估奈米銀微粒暴露之可能毒性效應影響
Using zebrafish as an animal model to evaluate possible toxic effects of silver nanoparticles
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 斑馬魚毒性測試奈米銀微粒ER Stress
外文關鍵詞: zebrafish, toxicity test, silver nanoparticles, ER Stress
相關次數: 點閱:137下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於廣泛的應用,奈米銀逐漸增加其暴露生物組織及環境的可能,其綜合的生物及毒理資訊仍舊缺乏,與人群健康及環境衛生的暴露及風險資訊仍未被系統性探索。本研究使用野生型斑馬魚胚胎動物模式建立毒性測試平台,藉以評估不同粒徑大小及不同表面修飾之奈米銀微粒毒性,探討合適毒性評估指標。亦探討暴露奈米銀微粒是否會對基因轉殖斑馬魚Trangenic line huORFZ 胚胎產生 ER Stress 反應,藉以評估其應用在毒性測試之可行性。利用模式生物斑馬魚胚胎建立毒性測試準則,胚胎暴露奈米銀微粒之毒性試驗,胚胎存活率會隨暴露濃度及暴露時間增加而遞減。斑馬魚胚胎暴露奈米銀微粒造成之畸形現象為:體型縮小;脊椎彎曲;心臟水腫;尾部彎曲。48 hpf 時,各組別之孵化率在高濃度組別與控制組有顯著差異。使用 Acute-to-Chronic Estimation (ACE) 軟體預測長期無效應濃 No-Effect Concentrations (NOEC) 之結果,四種奈米銀之長期 NOEC 預測值範圍約在 µg/L 範圍。毒性指標之實驗結果將有助於奈米材料危害風險評估。Homozygous huORFZ 胚胎暴露奈米銀微粒 SCS 實驗。初步發現暴露時間增加,更低濃度即會引起胚胎 ER Stress 表現。大致上胚胎 ER Stress 表現率會隨暴露時間增加而增強。而表現 ER Stress 之部位亦有隨時間進程而增加,依序為體表皮膚,感官嗅器,腦部與脊髓。huORFZ 胚胎能夠動態反映生理壓力,適合做為奈米材料毒性評估生物模式。

    Silver nanoparticles (AgNPs) are widely used in a growing number of applications. However, with the accelerating production of AgNPs into commercial products, which raises health and environmental concerns. Potential toxicological implications are not sufficiently known. The objectives of the present study were to establish a toxicity screening platform with zebrafish model, to test the hypothesis that transgenic line huORFZ generate ER Strees after exposed to AgNPs. Adverse effects of AgNPs on hatching and development of zebrafish embryos are in line with previous reports. Among the methods, LC50 values ranged from 0.13 to 2.24 µg/ml. Chronic NOEC value estimated by ACE software with MPA model ranging from 0.00001 to 0.00014 µg/ml. These data provides valuable information for nanamaterial risk assessment. When homozygous huORFZ embryos exposed to AgNP (SCS), expression of ER Stress in GFP signals occured in skin, olfactory bulb, brain and spinal cord. The percentage of GFP signals and severity increase along with time.

    第 一 章 序論 1 第 二 章 文獻回顧 2 第 一 節 奈米銀微粒之應用 2 第 二 節 奈米銀微粒之毒性 4 第 三 節 斑馬魚動物模式 6 第 四 節 國際組織規範 8 第 五 節 斑馬魚胚胎暴露奈米銀微粒之毒性 11 第 六 節 使用Transgenic line huORFZ 斑馬魚胚胎測試 ER Stress 表現 12 第 三 章 研究目的 14 第 四 章 研究材料與方法 15 第 一 節 研究材料 15 一 斑馬魚 15 二 膠體奈米銀微粒 15 三 儀器 17 四 耗材 18 五 藥品 18 第 二 節 研究方法與實驗步驟 19 一 斑馬魚之飼養 19 二 奈米銀微粒測試物準備 20 三 斑馬魚之胚胎取得 20 四 斑馬魚胚胎之毒性試驗 21 五 斑馬魚胚胎之毒性判斷標準 22 六 Trangenic line huORFZ 斑馬魚之毒性試驗 23 七 統計分析 24 第 五 章 研究結果 26 第 一 節 胚胎篩選 26 第 二 節 胚胎暴露奈米銀微粒之存活率 26 第 三 節 WT 胚胎暴露奈米銀微粒之半致死劑量 27 第 四 節 胚胎暴露奈米銀微粒之畸形現象 27 第 五 節 胚胎暴露奈米銀微粒之孵化率 28 第 六 節 WT 胚胎暴露奈米銀微粒之 NOEC 預測 29 第 七 節 Trangenic line huORFZ 胚胎暴露奈米銀微粒之 ER Stress 表現 29 第 六 章 結果討論 31 第 一 節 胚胎篩選 31 第 二 節 胚胎暴露奈米銀微粒之存活率 31 第 三 節 胚胎暴露奈米銀微粒之半致死劑量 31 第 四 節 胚胎暴露奈米銀微粒之畸形現象 32 第 五 節 胚胎暴露奈米銀微粒之孵化率 34 第 六 節 胚胎暴露奈米銀微粒之 NOEC 預測 34 第 七 節 Trangenic line huORFZ 胚胎暴露奈米銀微粒之 ER Stress 表現 34 第 七 章 結論 37 第 八 章 參考文獻 38

    Aaseth J, Halse J, Falch J. 1986. Chelation of silver in argyria. Acta Pharmacologica et Toxicologica 59:471-474.
    Agency for Toxic Substances and Disease Registry Public Health Statement. 1990. Toxicological profile for silver.
    Ahamed M, Alsalhi M, Siddiqui M. 2010. Silver nanoparticle applications and human health. Clinica Chimica Acta 411:1841-1848.
    Ahmad N, Shree K, Srivastava M, Dutta R. 2014. Novel rapid biological approach for synthesis of silver nanoparticles and its characterization. International Journal of Pharmacology 1:28-31.
    Amooaghaie R, Saeri MR, Azizi M. 2015. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and Environmental Safety 120:400-408.
    Amsterdam A, Lin S, Hopkins N. 1995. The aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. . Developmental Biology 171:123-129.
    Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102.
    Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S. 2011. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43-54.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. 2007. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 33:139-148.
    Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, et al. 2009. Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. Journal of Nanoparticle Research 12:1645-1654.
    Baker TJ, Tyler CR, Galloway TS. 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution 186:257-271.
    Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897-1910.
    Barman RP. 1991. A taxonomic revision of the indo-burmese species of danio rerio. Rec Zool Surv India Misc Publ, Occas Pap 137:1-91.
    Behra R, Sigg L, Clift MJD, Herzog F, Minghetti M, Johnston B, et al. 2013. Bioavailability of silver nanoparticles and ions: From a chemical and biochemical perspective. Journal of The Royal Society Interface 10:20130396.
    Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhof P. 2010. The release of nanosilver from consumer products used in the home. Journal of Environmental Quality 39:p. 1875-1882.
    Berry J, Gantar M, Gibbs P, Schmale M. 2007. The zebrafish (danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comparative biochemistry and physiology Toxicology & pharmacology : CBP 145:61-72.
    Bhat A. 2003. Diversity and composition of freshwater fishes in streams of centralwestern ghats, india. Environmental Biology of Fishes 68:25-38.
    Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. 2012. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (danio rerio). Journal of Toxicology 2012:293784.
    Bogle KA, Dhole SD, Bhoraskar VN. 2006. Silver nanoparticles: Synthesis and size control by electron irradiation. Nanotechnology 17:3204-3208.
    Bonventre JA, Pryor JB, Harper BJ, Harper SL. 2014. The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles. Journal of Nanoparticle Research 16:2761.
    Bortagaray V, Aramburu RC, Barrios L, Ojeda P, del Puerto G, Rodríguez-Ithurralde D. 2010. Embryotoxicity and teratogenesis in zebrafish embryos exposed in vitro to glyphosate-type herbicides. Journal of Developmental Toxicology.
    Bowden LP, Royer MC, Hallman JR, Lewin-Smith M, Lupton GP. 2011. Rapid onset of argyria induced by a silver-containing dietary supplement. Journal of Cutaneous Pathology 38:832-835.
    Bowman TV, Zon LI. 2010. Swimming into the future of drug discovery in vivo chemical screens in zebrafis. ACS Chemical Biology 5:159-161.
    Braydich-Stolle L, Hussain S, Schlager J, Hofmann M. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Science 88:412-419.
    Browning LM, Lee KJ, Nallathamby PD, Xu XH. 2013. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chemical Research in Toxicology 26:1503-1513.
    Burggren W, Pinder A. 1991. Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annual Review of Physiology 53:107-135.
    Burns C, Milan D, Grande E, Rottbauer W, MacRae C, Fishman M. 2005. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nature Chemical Biology 1:263-264.
    Carlson C, Hussain S, Schrand A, Braydich-Stolle L, Hess K, Jones R, et al. 2008 Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B 112:13608-13619.
    Cascio C, Geiss O, Franchini F, Ojea-Jimenez I, Rossi F, Gilliland D, et al. 2015. Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. Journal of Analytical Atomic Spectrometry 30:1255-1265.
    Chakraborty C, Hsu C, Wen Z, Lin C, Agoramoorthy G. 2009. Zebrafish: A complete animal model for in vivo drug discovery and development. Current Drug Metabolism 10:116-124.
    Chaloupka K, Malam Y, Seifalian AM. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology 28:580-588.
    Chen H, Hu J, Yang J, Wang Y, Xu H, Jiang Q, et al. 2010. Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens. Aquatic Toxicology 96:53-61.
    Chen J, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden F, et al. 1996. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123:293-302.
    Chen X, Schluesener H. 2008. Nanosilver: A nanoproduct in medical application. Toxicology Letters 176:1-12.
    Chen Y, Wang Z, Xu M, Wang X, Liu R, Liu Q, et al. 2014. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 8:pp 5813-5825.
    Cheng J, Flahaut E, Cheng SH. 2007. Effect of carbon nanotubes on developing zebrafish (danio rerio) embryos. Environmental Toxicology and Chemistry 26:708-716.
    Cho K-H, Park J-E, Osaka T, Park S-G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 51:956–960.
    Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic Toxicology 100:151-159.
    Choi O, Deng KK, Kim N-J, Ross Jr. L, Surampalli RY, Hu Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research 42:3066–3074.
    Choi O, Hu Z. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology 42:pp 4583-4588.
    Coffin A, Ou H, Owens K, Santos F, Simon J, Rubel E, et al. 2010. Chemical screening for hair cell loss and protection in the zebrafish lateral line. 7 1.
    Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, et al. 2007. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surgical Infections 8:397-404.
    Colvin VL. 2013. The potential environmental impact of engineered nanomaterials. Nature Biotechnology 21:1166-1170.
    Croteau M-N, Dybowska AD, Luoma SN, Misra SK, Valsami-Jones E. 2014. Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures. Environmental Chemistry 11:247-256.
    Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L. 2013 Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: Acute toxicity of silver nanoparticle preparations in zebrafish (danio rerio). Environmental Science & Technology 47:pp 3883-3892.
    Dalton LE, Clarke HJ, Knight J, Lawson MH, Wason J, Lomas DA, et al. 2013. The endoplasmic reticulum stress marker chop predicts survival in malignant mesothelioma. British Journal of Cancer 108:1340-1347.
    Daniels RJR. 2002. Freshwater fishes of pennisula india.:Universities Press, Hyderabad.
    Das D, Khanna N, Dasgupta CN. 2014. Heavy metals and hydrocarbons: Adverse effects and mechanism of toxicity.:Elsevier B.V., Waltham, MA, U.S.
    den Hertog J. 2005. Chemical genetics: Drug screens in zebrafish. Bioscience Reports 25:289-297.
    Drake PL, Hazelwood KJ. 2005. Exposure-related health effects of silver and silver compounds: A review. The Annals of Occupational Hygiene 49:575-585.
    Dubas ST, Pimpan V. 2008. Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Materials Letters 62:2661-2663.
    Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. 2013. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chemical Reviews 113:pp 4708-4754.
    Eckhardt S, Brunetto P, Gagnon J, Priebe M, Giese B, Fromm K. 2013 Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chemical Reviews 113:4708-4754.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environment International 37:517–531.
    Fako VE, Furgeson DY. 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Advanced Drug Delivery Reviews 61:478-486.
    Fan F-RF, Bard AJ. 2002. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. The Journal of Physical Chemistry B 106:pp 279-287.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. Journal of Biomedical Materials Research 52:662–668.
    Fox Jr. CLM. 1968. Silver sulfadiazine—a new topical therapy for pseudomonas in burns therapy of pseudomonas infection in burns. Archives of Surgery 96:184-188.
    Fraysse B, Mons R, Garric J. 2006. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicology and Environmental Safety 63:253-267.
    Freire PLL, Stamford TCM, Albuquerque AJR, Sampaio FC, Cavalcante HMM, Macedo RO, et al. 2015. Action of silver nanoparticles towards biological systems: Cytotoxicity evaluation using hen's egg test and inhibition of streptococcus mutans biofilm formation. International Journal of Antimicrobial Agents 45:183-187.
    Fung MC, Bowen DL. 1996. Silver products for medical indications: Risk-benefit assessment. Journal of Toxicology: Clinical Toxicology 34:119-126.
    Ganguly M, Pal J, Mondal C, Palc A, Pal T. 2015. Imine (-ch=n-) brings selectivity for silver enhanced fluorescence. Dalton Transactions 44:4370-4379.
    George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, et al. 2011. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:1805-1817.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (tio2, zno, ag, cnt, fullerenes) for different. Environmental Science & Technology 43 9216-9222.
    Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry 27:1972–1978.
    Griffitt RJ, Hyndman K, Denslow ND, Barber DS. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences 107:404-415.
    Griffitt RJ, Brown-Peterson NJ, Savin DA, Manning CS, Boube I, Ryan RA, et al. 2011. Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows (cyprinodon variegatus). Environmental Toxicology 31:160–167.
    Hennebel T, De Gusseme B, Boon N, Verstraete W. 2009. Biogenic metals in advanced water treatment. Trends in Biotechnology 27:90–98.
    Her G, Yeh Y, Wu J. 2003. 435-bp liver regulatory sequence in the liver fatty acid binding protein (l-fabp) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Developmental Dynamics 227:347-356.
    Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G. 1997. High-frequency generation of transgenic zebrafish which reliably express gfp in whole muscles or the whole body by using promoters of zebrafish origin. Developmental Biology 192:289-299.
    Higashijima S, Hotta Y, Okamoto H. 2000. Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. . Journal of Neuroscience 20:206-218.
    Hill AJ, Teraoka H, Heideman W, Peterson RE. 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Science 86:6-19.
    Huang C, Tu C, Hsiao C, Hsieh F, Tsai H. 2003. Germ-line transmission of a myocardium-specific gfp transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental Dynamics 228:30-40.
    Huang H, Vogel S, Liu N, Melton D, Lin S. 2001. Analysis of pancreatic development in living transgenic zebrafish embryos. Molecular and Cellular Endocrinology 177:117-124.
    Huang H, Yang X. 2004. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydrate Research 339:2627-2631.
    Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. 2005. In vitro toxicity of nanoparticles in brl 3a rat liver cells. Toxicology In Vitro 19:975-983.
    Huynh KA, Chen KL. 2011. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environmental Science & Technology 45:5564-5571.
    Incardona JP, Collier TK, Scholz NL. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology 196:191-205.
    Jezierska B, Lugowska K, Witeska M. 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiology and Biochemistry 35:625-640.
    Johnston H, Hutchison G, Christensen F, Peters S, Hankin S, Stone V. 2010. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology 40:328-346.
    Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D, et al. 2001. Inhibition of chop translation by a peptide encoded by an open reading frame localized in the chop 5' utr. Nucleic Acids Research 29:4341-4435.
    Kashiwada S. 2006. Distribution of nanoparticles in the see-through medaka (oryzias latipes). Environmental Health Perspectives 114:1697-1702.
    Kawata K, Osawa M, Okabe S. 2009. In vitro toxicity of silver nanoparticles at noncytotoxic doses to hepg2 human hepatoma cells. Environmental Science & Technology 43:6046-6051.
    Kennedy B, Vihtelic T, Checkley L, Vaughan K, Hyde D. 2001. Isolation of a zebrafish rod opsin promoter to generate a transgenic zebrafish line expressing enhanced green fluorescent protein in rod photoreceptors. . Journal of Biological Chemistry 276:14037-14043.
    Khanna PK, Singh N, Kulkarni D, Deshmukh S, Charan S, Adhyapak PV. 2007. Water based simple synthesis of re-dispersible silver nano-particles. Materials Letters 61:3366-3370.
    Kim KT, Truong L, Wehmas L, Tanguay RL. 2013. Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment. Nanotechnology 24:115101.
    Kim Y, Lee S, Jung S, Kim H, Choi J, Lee M. 2013. Establishment of a bone-specific col10a1: Gfp transgenic zebrafish. Molecules and Cells 36:145-150.
    Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T. 1995. Stages of embryonic development of the zebrafish Developmental Dynamics 203:253-310.
    Kittler S, Greulich C, Diendorf J, Köller M, Epple M. 2010. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chemistry of Materials 22:pp 4548-4554.
    Klein-Macphee G, Cardin J, Berry W. 1984. Effects of silver on eggs and larvae of the winter flounder. Transactions of the American Fisheries Society 113:247-251.
    Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, et al. 2010. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nature Chemical Biology 6:231-237.
    Kong H, Jang J. 2008. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051-2056.
    Kooti M, Gharineh S, Mehrkhah M, Shaker A, Motamedi H. 2015. Preparation and antibacterial activity of cofe2o4/sio2/ag composite impregnated with streptomycin. Chemical Engineering Journal 259:34–42.
    Kovriznych JA, Sotnikova R, Zeljenkova D, Rollerova E, Szabova E, Wimmerova S. 2013. Acute toxicity of 31 different nanoparticles to zebrafish (danio rerio) tested in adulthood and in early life stages - comparative study. Interdisciplinary Toxicology 6:67-73.
    Krøvel A, Olsen L. 2002. Expression of a vas:: Egfp transgene in primordial germ cells of the zebrafish. . Mechanisms of Development 116:141-150.
    L. Rodríguez-Sánchez , M. C. Blanco, López-Quintela MA. 2000. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B 104:9683-9688.
    Lee HC, Chen YJ, Liu YW, Lin KY, Chen SW, Lin CY, et al. 2011. Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene. Nucleic Acids Research 39:e139.
    Lee HC, Lu PN, Huang HL, Chu C, Li HP, Tsai HJ. 2014. Zebrafish transgenic line huorfz is an effective living bioindicator for detecting environmental toxicants. PLoS One 9:e90160.
    Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133-143.
    Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu X-HN. 2012. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chemical Research in Toxicology 25:pp 1029-1046.
    Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu XH. 2012a. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chemical Research in Toxicology 25:1029-1046.
    Lee KJ, Nallathamby PD, Browning LM, Desai T, Cherukuri PK, Xu XH. 2012b. Single nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicity of single nanoparticles in single embryos. Analyst 137:2973-2986.
    Lee KJ, Browning LM, Nallathamby PD, Osgood CJ, Xu XH. 2013a. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish. Nanoscale 5:11625-11636.
    Lee KJ, Browning LM, Nallathamby PD, Xu XH. 2013b. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chemical Research in Toxicology 26:904-917.
    Lee Y-J, Kim J, Oh J, Bae S, Lee S, Hong IS, et al. 2012. Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environmental Toxicology 31:155–159.
    Lee Y, Kim B, Lee D. 2014. Mechanical failure in distraction osteogenesis using the intramedullary skeletal kinetic distractor. Journal of the KoreaI Orthoaedic Association 49:172-176.
    Leung BO, Jalilehvand F, Mah V, Parvez M, Wu Q. 2013. Silver(i) complex formation with cysteine, penicillamine, and glutathione. Inorganic Chemistry 52:pp 4593-4602.
    Li Y-F, Chen C. 2011. Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980.
    Li Y, Kim YN, Lee EJ, Cai WP, Cho SO. 2006. Synthesis of silver nanoparticles by electron irradiation of silver acetate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 251:425-428.
    Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. 2007 Exposure of engineered nanoparticles to human lung epithelial cells:  Influence of chemical composition and catalytic activity on oxidative stress. Environmental Science & Technology 41:pp 4158-4163.
    Lin C-Y, Chiang C-Y, Tsai H-J. 2016. Zebrafish and medaka: New model organisms for modern biomedical research. Journal of Biomedical Science 23:19.
    Liu J, Sonshine DA, Shervani S, Hurt RH. 2010. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903-6913.
    Liu J, Wang Z, Liu FD, Kane AB, Hurt RH. 2012. Chemical transformations of nanosilver in biological environments. ACS Nano 6:pp 9887-9899.
    Liu S, Xu L, Zhang T, Ren G, Yang Z. 2010. Oxidative stress and apoptosis induced by nanosized titanium dioxide in pc12 cells. Toxicology 267:172-177.
    Liu Y, Liu B, Feng D, Gao C, Wu M, He N, et al. 2012. A progressive approach on zebrafish toward sensitive evaluation of nanoparticles' toxicity. Integrative Biology 4:285-291.
    Liu Z, Ren G, Zhang T, Yang Z. 2009. Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal ca1 neurons by silver nanoparticles. Toxicology 264:179-184.
    Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. 2011 Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Particle and Fibre Toxicology 1:18.
    Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research 5:pp 916-924.
    Long Q, Meng A, Wang H, Jessen J, Farrell M, Lin S. 1997. Gata-1 expression pattern can be recapitulated in living transgenic zebrafish using gfp reporter gene. . Developmental Biology 124:4105-4111.
    Luoma SN. 2008. Project on emerging nanotechnologies.Woodrow Wilson International Center for Scholars, Washington, DC.
    Majeed Khan MA, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS. 2011. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Research Letters 6:434.
    Maneerung T, Tokura S, Rujiravanit R. 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers 72: 43-51.
    Marx DE, Barillo DJ. 2014. Silver in medicine: The basic science. Burns 40:S9-S18.
    Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, et al. 2013. Assessment of nanosilver toxicity during zebrafish (danio rerio) development. Chemosphere 92:59-66.
    Massarsky A, Abraham R, Nguyen KC, Rippstein P, Tayabali AF, Trudeau VL, et al. 2014. Nanosilver cytotoxicity in rainbow trout (oncorhynchus mykiss) erythrocytes and hepatocytes. Comparative Biochemistry and Physiology, Part C Toxicology & Pharmacology 159:10-21.
    Menon AGK. 1999. Check list - fresh water fishes of india. Rec Zool Surv India Misc Publ, Occas Pap 175:234-259.
    Mirsattari S, Hammond R, Sharpe M, Leung F, Young G. 2004. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62:1408-1410.
    Molina GA, Watkins SC, Tsang M. 2007. Generation of fgf reporter transgenic zebrafish and their utility in chemical screens. BMC Developmental Biology 7:62.
    Murphey RD, Stern HM, Straub CT, Zon LI. 2006. A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chemical Biology & Drug Design 68:213-219.
    Muth-Kohne E, Sonnack L, Schlich K, Hischen F, Baumgartner W, Hund-Rinke K, et al. 2013. The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes. Ecotoxicology 22:1264-1277.
    Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. 2014. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustainable Chemistry & Engineering 2:1717-1723.
    Nagel R. 2002. Dart: The embryo test with the zebrafish danio rerio--a general model in ecotoxicology and toxicology. ALTEX 1:38-48.
    NanowerkLLC. 2015. Nanoparticle database. Available: http://nanowerk.com/nanocatalog/Single_element_nanoparticles/15/list/productasc/order/1/page.
    NIOSH NIfOSaH. 1992. The registry of toxic effects of chemical substances (rtecs)-silver (rtecs #: Vw3500000). Available: http://webapp1.dlib.indiana.edu/virtual_disk_library/index.cgi/5678550/FID2757/nioshdbs/rtecs/vw3567e0.htm.
    Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, et al. 2015. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenital Anomalies 55:1-16.
    Oberdörster E. 2004. Manufactured nanomaterials (fullerenes, c60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives 112:1058-1062.
    OECD. 1992a. Guideline 203 : Fish, acute toxicity test Organization for Economic Co-operation and Development.
    OECD. 1992b. Guideline 210 : Fish, early-life stage toxicity test. Organization for Economic Co-operation and Development:1-18.
    OECD. 1998. Guideline 212 : Fish, short-term toxicity test on embryo and sac-fry stage Organization for Economic Co-operation and Development:1-20.
    OECD. 2000. Test no. 215 : Fish, juvenile growth test. Organization for Economic Co-operation and Development.
    OECD. 2013. Guideline 256 : Fish embryo acute (fet) toxicity test. Organization for Economic Co-operation and Development:1-22.
    Ong KJ, Zhao X, Thistle ME, Maccormack TJ, Clark RJ, Ma G, et al. 2014. Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8:295-304.
    Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, Kudoh T, et al. 2013. Effects of particle size and coating on nanoscale ag and tio(2) exposure in zebrafish (danio rerio) embryos. Nanotoxicology 7:1315-1324.
    Palam L, Baird T, Wek R. 2011. Phosphorylation of eif2 facilitates ribosomal bypass of an inhibitory upstream orf to enhance chop translation. Journal of Biological Chemistry 286:10939-10949.
    Panyam J, Labhasetwar V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews 55:329-347.
    Park K, Tuttle G, Sinche F, Harper SL. 2013. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (danio rerio). Archives of Pharmacal Research 36:125-133.
    Parng C. 2005. In vivo zebrafish assays for toxicity testing. Current opinion in drug discovery development 8:100-106.
    Patel V, Berthold D, Puranik P, Gantar M. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports 5:112–119.
    Peterson R, Theobald H, Kimmel G. 1993. Developmental and reproductive toxicity of dioxins and related compounds: Cross-species comparisons. Critical Reviews in Toxicology 23:283-335.
    Powers CM, Yen J, Linney EA, Seidler FJ, Slotkin TA. 2010. Silver exposure in developing zebrafish (danio rerio): Persistent effects on larval behavior and survival. Neurotoxicology and Teratology 32:391-397.
    Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S. 2011. Silver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicology and Teratology 33:708-714.
    Prabhu S, Poulose EK. 2012. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effect. International Nano Letters 2.
    Pyati UJ, Look AT, Hammerschmidt M. 2007. Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Seminar in Cancer Biology 17:154-165.
    Rahman AKA. 1989. Freshwater fishes of bangladesh. Zoological
    society of bangladesh:Department of Zoology, University of Dhaka.
    Raveendran P, Fu J, Wallen SL. 2003. Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society 125:13940-13941.
    Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, et al. 2010. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348-351.
    Rizzello L, Pompa PP. 2014. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews 43: 1501-1518.
    Romer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR. 2011. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A 1218:4226-4233.
    Rubinstein AL. 2006. Zebrafish assays for drug toxicity screening. Expert Opinion on Drug Metabolism & Toxicology 2:231-240.
    S. Moein Moghimi ACH, and J. Clifford Murray. 2001. Long-circulating and target-specific nanoparticles : Theory to practice. Pharmacological Reviews 53:283-318.
    Sachidanandan C, Yeh JR, Peterson QP, Peterson RT. 2008. Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS One 3:e1947.
    Sano K, Inohaya K, Kawaguchi M, Yoshizaki N, Iuchi I, Yasumasu S. 2008. Purification and characterization of zebrafish hatching enzyme - an evolutionary aspect of the mechanism of egg envelope digestion. FEBS Journal 275:5934-5946.
    Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N. 2011. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules 49:188–193.
    SATO, SUEKI, NISHIJIMA. 1999. Two unusual cases of argyria: The application of an improved tissue processing method for x-ray microanalysis of selenium and sulphur in silver-laden granules. British Journal of Dermatology 140:158–163.
    Schluesener JK, Schluesener HJ. 2013. Nanosilver: Application and novel aspects of toxicology. Archives of Toxicology 87:pp 569-576.
    Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM. 2008. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19:235104.
    Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. 2014. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science 204:15-34.
    Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. 2014. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science 204 15-34.
    Shin HS, Yang HJ, Kim SB, Lee MS. 2004. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. Journal of Colloid and Interface Science 274:89-94.
    Šimáková P, Gautier J, Procházka M, Hervé-Aubert K, Chourpa I. 2014 Polyethylene-glycol-stabilized ag nanoparticles for surface-enhanced raman scattering spectroscopy: Ag surface accessibility studied using metalation of free-base porphyrins. The Journal of Physical Chemistry C 118:pp 7690-7697.
    Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. 2007. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. International Journal of Toxicology 26:135-141.
    Slane J, Vivanco J, Rose W, Ploeg H-L, Squire M. 2015. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering: C 48:188–196.
    Song H-D, Kim Y-J. 2006. Luminescent properties of er-doped zno phosphors. Korean Journal of Materials Research 16:58-62.
    Sotiriou GA, Pratsinis SE. 2010. Antibacterial activity of nanosilver ions and particles. Environmental Science & Technology 44:pp 5649-5654.
    Spitsbergen JM, Kent ML. 2003. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicologic Pathology 31:62-87.
    Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepulveda MS. 2011. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6:879-898.
    Sun Y, Xia Y. 2002. Shape-controlled synthesis of gold and silver nanoparticles. Science 298:pp. 2176-2179.
    Takesono A, Moger J, Farooq S, Cartwright E, Dawid I, Wilson S, et al. 2012. Solute carrier family 3 member 2 (slc3a2) controls yolk syncytial layer (ysl) formation by regulating microtubule networks in the zebrafish embryo. Proceedings of the National Academy of Sciences 109:3371-3376.
    Talwar PK, Jhingran, A.G. 1991. Inland fishes of india and adjacent countries. :A.A. Balkema, Rotterdam.
    Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. 2008. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Applied Surface Science 255:502-504.
    Tappin AD, Barriada JL, Braungardt CB, Evans EH, Patey MD, Achterberg EP. 2010. Dissolved silver in european estuarine and coastal waters. Water Research 44:4204–4216.
    Teraoka H, Dong W, Hiraga T. 2003. Zebrafish as a novel experimental model for developmental toxicology. Congenital Anomalies 43:123-132.
    Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of The Total Environment 408:999–1006.
    Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of Total Environment 408:999-1006.
    Truong L, Saili K, Miller J, Hutchison J, Tanguay R. 2012. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155:269-274.
    U.S.EPA. 2009. National recommendedwater quality criteria. Available: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table.
    U.S.EPA. 2013. Secondary drinking water regulations: Guidance for nuisance chemicals. Available: https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals#tabletop.
    USEPA. 1996a. Fish acute toxicity test, freshwater and marine. Ecological Effects Test Guidelines OPPTS 8501075.
    USEPA. 1996b. Fish early-life stage toxicity test. Ecological Effects Test Guidelines OPPTS 8501400.
    USEPA. 2003a. Acute-to-chronic estimation (ace) with time-concentration-effect models user manual
    USEPA. 2003b. Acute-to-chronic estimation (ace) with time-concentration-effect models software. Vol. 2.0:EPA National Health and Environmental Effects Research Laboratory.
    Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Jr., Rejeski D, et al. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology 6:1769-1780.
    Vigneshwaran N KA, Varadarajan PV, Nachane RP, Balasubramanya RJ. 2007. Functional finishing of cotton fabrics using silver nanoparticles. Journal of Nanoscience and Nanotechnology 7:1893–1897.
    Wageh S, He L, Al-Ghamdi AA, Al-Turki YA, Tjong SC. 2014. Nano silver-anchored reduced graphene oxide sheets for enhanced dielectric performance of polymer nanocomposites. RSC Advances:28426-28431.
    Walton E, Cronan M, Beerman R, Tobin D. 2015. The macrophage-specific promoter mfap4 allows live, long-term analysis of macrophage behavior during mycobacterial infection in zebrafish. . PLoS One 10:e0138949.
    Wang X, Ron D. 1996. Stress-induced phosphorylation and activation of the transcription factor chop (gadd153) by p38 map kinase. Science 272:1347-1349.
    Wang Z, Zhao J, Li F, Gao D, Xing B. 2009. Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77:67-73.
    Wang Z, Liu S, Ma J, Qu G, Wang X, Yu S, et al. 2013. Silver nanoparticles induced rna polymerase-silver binding and rna transcription inhibition in erythroid progenitor cells. ACS Nano 7:pp 4171-4186.
    Watts RJ. 1998. Hazardouswastes: Sources, pathways, receptors.:John Wiley & Sons, Ltd., New York, U.S.
    Wen G, Luo Y, Liang A, Jiang Z. 2014. Autocatalytic oxidization of nanosilver and its application to spectral analysis. Scientific Reports 4:article number: 3990.
    Westerfield M. 2000. The zebrafish book. A guide for the laboratory use of zebrafish (danio rerio). 4th Edition ed:University of Oregon Press, Eugene.
    WHO. 2006. Guidelines for drinking-water quality 1:434.
    Wijnhoven S, Peijnenburg W, Herberts C, Hagens W, Oomen A. 2009. Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109-U178.
    Wu D, Pak ES, Wingard CJ, Murashov AK. 2012. Multi-walled carbon nanotubes inhibit regenerative axon growth of dorsal root ganglia neurons of mice. Neuroscience Letters 507:72-77.
    Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, et al. 2013. Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chemistry of Materials 25:4679–4689.
    Xie Z, Wang Z, Ke Y, Zha Z, Jiang C. 2003. Nanosilver fabrication under the control of ligands containing pyridyl group in solution phase with photoreduction method. Chemistry Letters 32:686-687.
    Yang WJ, Neoh K-G, Kang E-T, Teo SL-M, Rittschof D. 2014. Polymer brush coatings for combating marine biofouling. Progress in Polymer Science 39:1017-1042.
    Yang Y, Chen Q, Wall JD, Hu Z. 2012. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research 46:1176-1184.
    Yang Y, Chen Q, Wall JD, Hu Z. 2012. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research 46:1176-1184.
    Yeo M-K, Kang M. 2008. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bulletin of the Korean Chemical Society 29:1179–1184.
    Yeo M-K, Yoon J-W. 2009. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Molecular & cellular toxicology 5:23-31.
    Yin B, Ma H, Wang S, Chen S. 2003. Electrochemical synthesis of silver nanoparticles under protection of poly(n-vinylpyrrolidone). The Journal of Physical Chemistry B 107: 8898-8904.
    Yin Y, Liu J, Jiang G. 2012. Sunlight-induced reduction of ionic ag and au to metallic nanoparticles by dissolved organic matter. ACS Nano 6:pp 7910-7919.
    Zhang F, Smolen JA, Zhang S, Li R, Shah PN, Cho S, et al. 2015. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections. Nanoscale 7:2265-2270.
    Zhang W, Yao Y, Li K, Huang Y, Chen Y. 2011a. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environmental Pollution 159:3757-3762.
    Zhang W, Yao Y, Sullivan N, Chen Y. 2011b. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environmental Science & Technology 45:pp 4422-4428.
    Zhang Y, Chen F, Zhuang J, Tang Y, Wang D, Wang Y, et al. 2002. Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chemical Communications:2814-2815.
    Zhao J, Xu L, Zhang T, Ren G, Yang Z. 2009. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal ca3 pyramidal neurons. Neurotoxicology 30:220-230.
    Zhu Y, Morisato K, Li W, Kanamori K, Nakanishi K. 2013. Synthesis of silver nanoparticles confined in hierarchically porous monolithic silica: A new function in aromatic hydrocarbon separations. ACS Applied Materials & Interfaces 5:pp 2118-2125.
    Zon LI, Peterson RT. 2005. In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery 4:35-44.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE