| 研究生: |
邱世彬 Chiu, Shih-bin |
|---|---|
| 論文名稱: |
散熱鰭片之電磁特性與接地構型之分析 Analysis of the Electromagnetic Characteristics and Grounding Configuration of Pin-Fin Heatsinks |
| 指導教授: |
周榮華
Chou, Jung-hua |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 散熱鰭片 、電磁輻射 、電磁訊號源 、接地構型 |
| 外文關鍵詞: | heatsink, EM emissions, EM excitation source, grounding configuration |
| 相關次數: | 點閱:119 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著高速電路的演進及CPU時脈頻率的提升,散熱模組的使用已不可或缺,然而在散熱問題考量下,卻衍生出鰭片、熱管及冷卻管路等類天線外型結構之電磁相容性(EMC)問題。本文以全波馬克斯威爾方程式為統御方程式,利用時域有限差分法(FDTD)搭配完美匹配層(PML)之邊界條件,以三類型電磁訊號源在不同操作頻率下探討針狀散熱鰭片之電磁共振行為,並採用金屬周界接地模式,以探究此法對改善鰭片電磁共振之適用性。
就訊號源影響而言,Modulated Gaussian Pulse誘發鰭片共振發生於特定頻率,共振點能量集中;Differentiated Gaussian Pulse除了共振點能量集中外,並隨著操作頻率提升至4GHz時,鰭片共振會呈現分群效應,另一現象為電磁能量匱乏區之產生,此區會隨著操作頻率增加而平移;Smooth Compact Pulse則具有均勻能量分佈於頻帶之特徵,當操作頻率提升至8或10GHz時,共振點數量增加且往高頻區段移動,共振能量呈現均佈型態。
針對鰭片結構分析,sink6x6鰭片為最早反應訊號源影響之結構,block鰭片則在高頻時具有明顯之耦合行為,配合時域態的電場分佈圖,可知鰭針分佈處為電場集中點。sink3x3鰭片則可抑制Z方向電場之作用。就鰭片吸收與輻射型態下能量觀點比較,鰭片的吸收能力較輻射能力高,其強度差值約為2個order。
對於接地構型,採用金屬周界接地模式,對於訊號源所誘發之鰭片共振,可將高頻區段之共振點抑制到2-10GHz頻段。針對sink6x6鰭片採用不同接地構型,若搭配四周接地模式,可藉由共振腔之特性改變共振頻率點,且於操作頻率在1GHz時,可降低共振量值約1.4倍;而嵌入接地模式可將輻射型態共振點頻率抑制達8GHz,而改善效益最高為開縫接地構型,兼具降低共振強度與偏移共振點之優勢,於操作頻率1GHz時,可降低共振幅度約4倍,另一特色為可使共振點突波分佈的特性趨於平緩,且對於抑制高頻共振顯現其能力。
With the evolution of high speed circuits and higher CPU clock frequency, cooling modules are necessary for electronic systems. However, the configurations of the cooling modules such as heatsinks, heatpipes, may induce EMC problems. In this study, the electromagnetic effect of pin-fin heatsinks is investigated by solving Maxwell equations numerically using a FDTD method and PML boundary conditions. Three types of excitation sources with different operating frequencies are explored. For suppressing the EM effects of fins, grounding methods by using metal slabs are also examined.
For the effect of excitation sources, resonant behaviors triggered by Modulated Gaussian Pulse occur at specific frequencies. For Differentiated Gaussian Pulse, the distribution of resonant points shows cluster phenomena due to the peaks of the source when the reference operating frequency is increased to 4GHz. Also, an EM empty bandwidth exists which shifts with the operating frequency. For the Smooth Compact Pulse excitation source, quite a few multiple resonant frequencies are observed at higher operating frequencies.
Among the heatsinks, the 6x6 pin-fin heatsink is most liable to EM energy to induce EM resonance. Using a metal block as a heatsink at higher operating frequencies should be avoided as it may induce undesirable EM effects.The 3x3 pin-fin heatsink can suppress the Z-direction electric field. No matter what the excitation source is, the absorption magnitudes of the fins are much larger than those due to radiation.
For grounding methods with metal slabs, the scheme is effective in suppressing emissions at higher frequencies. Different grounding configurations for the 6x6 pin-fin heatsink show that the EM resonant magnitude can be reduced by 1.4 times at 1GHz operating frequency. The resonant points can be changed by the fin cavity characteristics by using surrounded grounding method. As for the embedded grounding model, the scheme can suppress emissions up to 8GHz. For the slit grounding model, the adverse EM effect can be decreased by 4 times at low operating frequency. Additionally, this grounding configuration can make the resonant pulse more smoothly and suppress the high frequency resonance more effectively.
[1] R. R. Tummala, “Fundamental of Microsystems Packaging,” Mcgraw-Hill, 2001.
[2] H. Xie, M. Aghazadeh, W. Lui and K. Haley, “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-notebooks,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, vol.19, no.1, pp.54-65, March, 1996.
[3] D. D. Pollock, “Thermoelectricity Theory Thermomtery Tool ASTM Special Technical Publication,” 1985.
[4] R. C. Chu, U. P. Hwang and R. E. Simons, “Conduction Cooling for an LSI Package: A One-Dimensional Approach,” IBM J. Res. Develop., vol.26, no.1, pp.55-66, January, 1982.
[5] R. A. Wirtz, W. M. Chen and R. H. Zhou, “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks,” Journal of Electronic Packaging, ASME, vol.116, pp.206-211, 1994.
[6] R. L. Webb, “Principles of Enhanced Heat Transfer,” John Wiley & Sons, 1994.
[7] M. Behnia, D. Copeland and D. A. Soodphakdee, “Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow,” IEE Int. Society Conference on Thermal Phenomena, pp.310-315, 1998.
[8] A. T. Morrison, “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection,” IEEE Int. Society Conference on Thermal Phenomena, pp.145-148, 1992.
[9] C. L. Chapman, S. Lee and B. L. Schmidt, “Thermal Performance of an Elliptical Pin Fin Heat Sink,” IEEE 10th SEMI-THERM Symposium, pp.24-32, 1994.
[10]H. Shaukatullah, W. R. Storr, B. J. Hansen and M. A. Gaynes, “Design and Optimization of Pin Fin Heat Transfer for Low Velocity Application,” IEEE 12th SEMI-THERM Symposium, pp.151-163, 1996.
[11]G. L. Lehmann and S. J. Kosteva, “A Study of Forced Convection Direct Air Cooling in the Downstream Vicinity of Heat Sinks,” Journal of Electronic Packaging, ASME, vol.112, pp.234-240, 1990.
[12]謝金明,高速數位電路設計暨雜訊防制技術,Hewlett Packard, 1997.
[13]http://en.wikipedia.org/wiki/Nehalem_(CPU_architecture)
[14]C. R. Paul, “Introduction to Electromagnetic Compatibility,” Wiley, New York, 1992.
[15]M. I. Montrose, “Printed Circuit Board Design Techniques for EMC Compliance,” IEEE Press, New York, 1996.
[16]M. I. Montrose, “EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple,” IEEE Press, New York, 1999.
[17]H. W. Ott, “Noise Reduction Techniques in Electronic Systems,” John Wiley&Sons, 1988.
[18]C. F. Lee, K. Li, S.Y. Poh, R. T. Shin and J. A. Kong, “Electromagnetic Radiation from a VLSI Package and Heatsink Configuration,” IEEE International Symposium on Electromagnetic Compatibility, pp.393-398, 1991.
[19]C. R. Paul, “Printed Circuit Board EMC,” Proc.6th Int. Symp. On EMC., pp.107-114, March, 1985.
[20]J. D. M. Osburn and D. R. J. White, “Grounding, a Recommendation for the Future,” Proc. IEEE Int. EMC Symp., pp.155-160, August, 1987.
[21]L. B. Gravelle and P. F. Wilson, “EMI/EMC in Printed Circuit Boards-A literature Review,” IEEE Transactions on Electromagnetic Compatibility, vol. 34, no. 2, pp.109-116, 1992.
[22]D. N. Ladd and G. I. Costache, “Finite Element Analysis of The Electromagnetic Radiation From A VLSI Package Heatsink,” IEEE International Symposium on Electromagnetic Compatibility, pp.120-123, August, 1992.
[23]E. Sumbar, F. E. Vermeulen, and F. S. Chute, “Implementation of Radiation Boundary Conditions in the Finite Element Analysis of Electromagnetic Wave Propagation,” IEEE Transactions on Microwave Theory and Techniques, vol.39, no. 2, pp.267-273, February, 1991.
[24]K. Li, C. F. Lee, S.Y. Poh, R. T. Shin and J. A. Kong, “Application of FDTD Method to Analysis of Electromagnetic Radiation from VLSI Heatsink Configurations,” IEEE Transactions on Electromagnetic Compatibility, vol. 35, no. 2, pp. 204-214, May, 1993.
[25]C. E. Brench, “Heatsink Radiation as a Function of Geometry,” IEEE International Symposium on Electromagnetic Compatibility, pp. 105-109, August, 1994.
[26]C. E. Brench, “Creating Practical FDTD Models for EMC Analysis,” IEEE International Symposium on Electromagnetic Compatibility, pp. 174-178, August, 1995.
[27]N. J. Ryan, D. A. Stone and B. Chambers, “Application of the FDTD Method to Modeling the Electromagnetic Radiation from Heatsinks,” IEE 10th International Conference on Electromagnetic Compatibility, pp.119-124, 1-3 September, 1997.
[28]N. J. Ryan, D. A. Stone and B. Chambers, “Application of FD-TD to the Prediction of RF Radiation from Heatsinks,” IEE Electronics Letters, vol.33, no.17, pp.1443-1444, 14August, 1997.
[29]S. K. Das and T. Roy, “An Investigation on Radiated Emissions from Heatsinks,” IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp.784-789, 24-28August, 1998.
[30]M. P. Robinson, T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, J. Porter and D. W. P. Thomas, “Analytic Formulation for the Shielding Effectiveness of Enclosures with Apertures,” IEEE Transactions on Electromagnetic Compatibility, vol.40, no.3, pp.240-248, 1998.
[31]D. W. P. Thomas, A. Denton, T. Konefal, T. M. Benson, C. Christopoulos, J. F. Dawson, A. C. Marvin and J. Porter, “Characterisation of the Shielding Effectiveness of Loaded Equipment Enclosures,” IEE International Conference and Exhibition on Electromagnetic Compatibility, pp.89-94, 12-13July, 1999.
[32]N. J. Ryan, D. A. Stone and B. Chambers, “FDTD Modeling of Heatsinks for EMC,” IEE International Conference and Exhibition on Electromagnetic Compatibility, pp.125-130, 12-13 July, 1999.
[33]J. Nonaka, S. Nitta, A. Mutoh and T. Miyashita, “The Influence of Straight-Fin Heatsink on Noise Susceptibility of IC-Capacitive Coupling,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.345-350, 2-6 August, 1999.
[34]H. T. Hsu, “The Influences of Heat Sink on Noise Immunity of ICs,” IEEE International Symposium on Electromagnetic Compatibility, pp.622-625, May, 1994.
[35]J. Nonaka, S. Nitta, A. Mutoh and T. Miyashita, “The Influence of Heatsink on Noise Susceptibility of IC,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.231-236, August, 1998.
[36]S. Nitta, “Noise Proof Techniques in Electronic Equipment,” Ohm Co., 1966
[37]P. Havarasan, M. Haines, H. Skinner and F. Justice, “Current and Future EMI Challenges at Intel and How to Manage Them,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.281-283, 21-25 August, 2000.
[38]K. Radhakrishnan, D. Wittwer and Yuan-Liang Li, “Study of Heatsink Grounding Schemes for GHz Microprocessors,” IEEE Conference on Electrical Performance of Electronic Packaging, pp.189-192, 23-25 October, 2000.
[39]B. Archambeault, S. Pratapneni, L. Zhang, D. C. Wittwer and J. Chen, “A Proposed Set of Specific Standard EMC Problems to Help Engineers Evaluate EMC Modeling Tools,” IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp.1335-1340, 13-17 August, 2001.
[40]J. C. Diepenbrock, B. Archambeault and L. D. Hobgood, “Improved Grounding Method for Heat Sinks of High Speed Processors,” IEEE Electronic Components and Technology Conference 51th Proceedings, pp.993-996, June, 2001.
[41]“S-Parameter Techniques for Faster, More Accurate Network Design,” Hewlett-Packard Application Note 95-1.
[42]G. Felic and R. Evans, “Study of Heat Sink EMI Effects in SMPS Circuits,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.254-259, 13-17 August, 2001.
[43]C. E. Brench and O. M. Ramahi, “Source Selection Criteria for FDTD Models,” IEEE International Symposium on Electromagnetic Compatibility, vol.1, pp.491-494, 24-28August, 1998.
[44]L. Tihanyi, “Electromagnetic Compatibility in Power Electronics,” IEEE Press, 1995.
[45]Yu Huang, J. E. Butler, M. de Sorgo, R. E. DuBroff, T. H. Hubing, J. L. Drewniak and T. P. van Doren, “EMI Considerations in Selecting Heat-Sink-Thermal -Gasket Materials,” IEEE Transactions on Electromagnetic Compatibility, vol.43, no.3, pp.254-260, 2001.
[46]J. F. Dawson, A. C. Marvin, S. J. Porter, A. Nothofer, J. E. Will and S. Hopkins, “The Effect of Grounding on Radiated Emissions from Heatsinks,” IEEE International Symposium on Electromagnetic Compatibility, vol.2, pp.1248-1252, 13-17 August, 2001.
[47]I. Raza, “Containing Emissions from a Microprocessor Module,” IEEE International Symposium on Electromagnetic Compatibility, vol.2, pp.871-876, August, 2000.
[48]C. Wang, J. L. Drewniak, J. L. Knighten, D. Wang, R. Alexander and D. M. Hockanson, “Grounding of Heatpipe/Heatspreader and Heatsink Structures for EMI Mitigation,” IEEE International Symposium on Electromagnetic Compatibility, vol.2, pp.916-920, 13-17 August, 2001.
[49]C. Wang, X. Ye, J. L. Drewniak, J. L. Knighten, D. G. Wang and R. Alexander, “FDTD Modeling of EMI due to Coupling from PCB Traces to Heatpipe/Heatsink Structures,” 14th International Zurich Symposium, pp.541-544, February, 2001.
[50]R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler and M. Schneider, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials,” IEEE Transactions on Electromagnetic Compatibility, vol.32, no.3, pp.222-227, August, 1990.
[51]Rong Li and Lin-Chang Zhang, “Heatsink Grounding Effect on Radiated Emission of Electronic Device,” IEEE 3rd International Symposium on Electromagnetic Compatibility, pp.704-709, 21-24 May, 2002.
[52]N. J. Ryan, B. Chambers and D. A. Stone, “FDTD Modeling of Heatsink RF Characteristics for EMC Mitigation,” IEEE Transactions on Electromagnetic Compatibility, vol.44, no. 3, pp.458-465, August, 2002.
[53]D. G. Wang, J. L. Knighten and P. K. Muller, “An Integrated Vent, Heatsink and EMI Shield,” IEEE 18th Annual Symposium on Semiconductor Thermal Measurement and Management, pp.125-131, 12-14 March, 2002.
[54]G. P. Peterson, “An Introduction to Heat Pipes,” John Wily & Sons, New York, 1995.
[55] D. M. Pozar, “Microwave Engineering,” 2nd Ed., John Wily & Sons, Inc., 1998.
[56]A. Damiano, G. Gatto, I. Marongiu and A. Piroddi, “A Heat Sink Model for EMI Resonance Frequency Determination,” IEEE 35th Annual on Power Electronics Specialists Conference, vol.1, pp.273-277, 20-25 June, 2004.
[57]D. M. Hockanson and R. D. Slone, “Investigation of EMI Coupling at CPU Interconnect,” IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp.424-429, 9-13 August, 2004.
[58]C. A. Balanis, “Advanced Engineering Electromagnetics,” John Wily & Sons, Inc., New York, 1989.
[59]丁志雄,散熱鰭片對電磁效應之影響,國立成功大學工程科學研究所博士論文,2004.
[60]S. B. Chiu, C. H. Ding and J. H. Chou, “The Electromagnetic Effect of Cooling Fins,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.19, pp. 315-330, 2006.
[61]K. S. Kunz, and R. J. Luebbers, “The Finite Difference Time Domain Method for Electromagnetics,” CRS, 1993.
[62]P. Silvester, “Finite Elements for Electrical Engineers,” Cambridge U. Press, N.Y., 1990.
[63]R. Laroussi and G. I. Costache, “Finite-Element Method Applied to EMC Problems,” IEEE Transactions on Electromagnetic Compatibility, vol. 35, no. 2, pp. 178-184, 1993.
[64]R. F. Harrington, “Field Computation by Moment Method,” IEEE Press, 1993.
[65]R. D. Kenneth, “Engineering Electromagnetics,” Prentice Hall, Inc., 1998
[66]K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations,” IEEE Transactions on Antennas and Propagation, vol. 14, pp.302-307, 1966.
[67]A. Taflove and K. R. Umashankar, “The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic Wave Interactions,” Electromagn. vol.10, no.1-2, pp105-126, 1990.
[68]A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite- Difference Time- Domain Method,” 2nd ed., Artech House, Boston, 2000.
[69]M. N. O. Sadiku, “Numerical Techniques in Electromagnetics,” CRC Press, Boca Raton, Fla., pp.179-187, 1992.
[70]A. Taflove and M. E. Brodwin, “Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations,” IEEE Transactions on Microwave Theory and Techniques, vol.23, pp.623-630, August, 1975.
[71]B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Mathematics of Computation, vol. 31, pp.629-651, 1977
[72]G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations,” IEEE Transactions on Electromagnetic Compatibility, vol. 23, pp.377-382, 1981.
[73]L. N. Trefethen and L. Halpern, “Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions,” Mathematics of Computation, vol. 47, pp.421-435, 1986.
[74]T. G. Moore, J. G. Blaschak, A. Taflove and G. A. Kriegsmann, “Theory and Application of Radiation Boundary Operators,” IEEE Transactions on Antennas and Propagation, vol. 36, no.12, pp.1797-1812, 1988.
[75]R. L. Higdon, “Numerical Absorbing Boundary Conditions for the Wave Equation,” Mathematics of Computation, vol. 49, pp.65-90, 1987.
[76]Z. P. Liao, H. L. Wong, B. P. Yang and Y. F. Yuan, “A Transmitting Boundary for Transient Wave Analysis,” Science Sinica, Series A, vol.27, no.10, pp.1063-1076, 1984.
[77]J. P. Berenger,“A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, vol. 114, pp.185-200, 1994.
[78]J. P. Berenger, “Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, vol.127, pp.363-379, 1996.
[79]J. P. Berenger, “Perfectly Matched Layer for the FDTD Solution of Wave- Structure Interaction Problems,” IEEE Transactions on Antennas and Propagation, vol. 51, pp.110-117, 1996.
[80]J. P. Berenger, “A Perfectly Matched Layer for Free-Space Simulations in Finite-Difference Computer Codes,” Anneals des Telecommunications, vol. 51, pp.39-46, 1996.
[81]J. P. Berenger, “Improved PML for the FDTD Solution of Wave-Structure Interaction Problems,” IEEE Transactions on Antennas and Propagation, vol. 45, pp.466-473, 1997.
[82]J. P. Berenger, “Numerical Reflection of Evanescent Waves from Perfectly Matched Layers,” Proc. IEEE on Antennas and Propagation, Soc. Int. Symposium, vol. 3, pp.1888-1891, 1997.
[83]B. Archambeault, C. Brench and O. M. Ramahi, “EMI/EMC Computational Modeling Handbook,” 2nd ed., Kluwer Academic Publishers, Boston, 2001.