簡易檢索 / 詳目顯示

研究生: 黃國貞
Suwanana, Rahman Faiz
論文名稱: 利用黏性壓印技術探討石墨烯之黏著特性
Probing the Adhesion Behavior of Graphene via a Viscoelastic Stamping Technique
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 49
外文關鍵詞: PDMS stamp, graphene, viscoelasticity
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Graphene and the other two-dimensional materials still have a great potential in electronic device application. Combining and varying their amount of layer, shape, and size can be an infinite possibility to obtain an excellent performance of a device. An effective and efficient fabrication process is required. Using load cell and a viscoelastic stamp PDSM-based, here we report an experiment to examine the adhesion behavior which happens in the process. Varying the carrier substrate, curing process of the stamp, and peeling speed have done to identify the range of adhesion of samples. The result shows that the adhesion occurs between graphene-graphene and graphene-SiO2 substrate have a higher value than the ability of PDMS stamp to pick up. A surface modification and an alternative substrate are needed to make the adhesion lower. With proper improvement, this work can be an option to realize an effective fabrication method of a two-dimensional heterostructure device.

    CERTIFICATE i ABSTRACT ii ACKNOWLEDGMENT iii TABLE OF CONTENT iv LIST OF TABLES vi LIST OF FIGURES vii CHAPTER 1 INTRODUCTION 1 1.1. Graphene 1 1.2. 2D materials and heterostructures 5 1.3. PDMS stamping 9 1.4. Adhesion 11 1.5. The other works 15 1.6. Objectives 17 CHAPTER 2 METHOD 18 2.1. Stage and observation 18 2.2. Sample preparation 25 2.2.1. Graphene 25 2.2.2. PDMS stamp 26 2.3. Standard Operating Procedure 27 CHAPTER 3 RESULT AND DISCUSSION 29 3.1. Measurement process 29 3.2. Viscoelasticity 30 3.3. Surface Adhesion 33 3.3.1. Graphene-graphene 33 3.3.2. Graphene-substrate 34 3.4. Overview 38 3.4.1. Alternative substrate 39 CHAPTER 4 CONCLUSION AND SUGGESTION 43 REFERENCE 45 Appendix 47

    1. Zhou, X., et al., Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2d Materials, 2017. 4(2).
    2. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
    3. Velicky, M. and P.S. Toth, From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017. 8: p. 68-103.
    4. Wang, J.G., F.C. Ma, and M.T. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. Rsc Advances, 2017. 7(27): p. 16801-16822.
    5. Cui, X., et al., Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011. 3(5): p. 2118-2126.
    6. Chen, X.P., L.L. Zhang, and S.S. Chen, Large area CVD growth of graphene. Synthetic Metals, 2015. 210: p. 95-108.
    7. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    8. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
    9. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
    10. Butler, S.Z., et al., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. Acs Nano, 2013. 7(4): p. 2898-2926.
    11. Boehm, H.P., et al., Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien. Zeitschrift für anorganische und allgemeine Chemie, 1962. 316(3-4): p. 119-127.
    12. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-8.
    13. Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008. 3(4): p. 206-209.
    14. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
    15. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
    16. Kusmartsev, F.V., et al. Application of Graphene within Optoelectronic Devices and Transistors. ArXiv e-prints, 2014. 1406.
    17. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008. 3(9): p. 563-568.
    18. Seo, J., et al., Study of Cooling Rate on the Growth of Graphene via Chemical Vapor Deposition. Chemistry of Materials, 2017. 29(10): p. 4202-4208.
    19. Ashton, M., et al., Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. Physical Review Letters, 2017. 118(10).
    20. Schmolla, W., Positive Drift Effect of Bn-Inp Enhancement N-Channel Misfet. International Journal of Electronics, 1985. 58(1): p. 35-41.
    21. Das, S., et al., High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Letters, 2013. 13(1): p. 100-105.
    22. Lee, G.H., et al., Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. Acs Nano, 2015. 9(7): p. 7019-7026.
    23. Han, S.A., R. Bhatia, and S.-W. Kim, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015. 2(1): p. 17.
    24. Pizzocchero, F., et al., The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016. 7.
    25. Tien, D.H., et al., Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. Acs Applied Materials & Interfaces, 2016. 8(5): p. 3072-3078.
    26. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. arXiv preprint arXiv:1307.6718, 2013.
    27. Wang, J., et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003. 299(5613): p. 1719-1722.
    28. Bertolazzi, S., D. Krasnozhon, and A. Kis, Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures. Acs Nano, 2013. 7(4): p. 3246-3252.
    29. Zhang, W.J., et al., Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014. 4.
    30. Jang, H., et al., Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering. Nanotechnology, 2016. 27(36).
    31. Yoon, T., et al., Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process. Nano Letters, 2012. 12(3): p. 1448-1452.
    32. Koenig, S.P., et al., Ultrastrong adhesion of graphene membranes. Nature Nanotechnology, 2011. 6(9): p. 543-546.
    33. Gao, W., et al., Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. Journal of Physics D-Applied Physics, 2014. 47(25).
    34. Meitl, M.A., et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2006. 5(1): p. 33-38.
    35. Lee, H.J. and J. Yu, Study on the effects of copper oxide growth on the peel strength of copper/polyimide. Journal of Electronic Materials, 2008. 37(8): p. 1102-1110.
    36. Hsieh, Y.P., et al., Reducing the graphene grain density in three steps. Nanotechnology, 2016. 27(10).

    下載圖示 校內:2020-02-28公開
    校外:2020-02-28公開
    QR CODE