| 研究生: |
李紹銘 Lee, Shao-Ming |
|---|---|
| 論文名稱: |
新穎聚胺基甲酸酯於固態高分子電解質之研究 Study on the Novel Polyurethane Polymer Electrolytes |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 導電度 、過氯酸鋰 、螯合基 、聚胺基甲酸酯 |
| 外文關鍵詞: | conductivity, lithium perchlorate, chelating groups, polyurethane |
| 相關次數: | 點閱:87 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要為合成以poly(ethylene glycol)( PEG)為軟鏈段的不同類型聚胺基甲酸酯(polyurethane,PU)。首先,經聚合而得含螯合基之PU,其次為含羧酸基之聚尿素胺基甲酸酯(polyurethaneurea,PUU)。而所有的聚合物皆溶合過氯酸鋰(LiClO4)以形成高分子固態電解質,並探討其溶合鋰鹽的能力、鋰離子的分布狀態、導電度與導電行為。
對本研究所合成的高分子而言,其軟、硬鏈段都存在著相當程度的相混合。鋰離子會與分子內的PEG、胺基甲酸酯基、尿酯基等作用而破壞氫鍵,使結晶度逐漸減弱甚至消失。當鋰離子與軟鏈段產生螯合作用時,會形成物理性架橋而使軟鏈段的Tg上升;至於硬鏈段的Tg變化雖稍複雜,但最終也皆隨著鋰鹽濃度的增加而增加,且最後逐漸趨於緩和。
在導電度方面,所有PU(或PUU)電解質的導電度皆隨著鋰鹽濃度的增加而先升後降,且有一極大值;因為導電主要是在非結晶區進行,所以,導電度的極大值都發生在分子排列緊密、無助於導電的結晶態轉變為非結晶態之後。至於導電行為方面,則仍以遵守Arrhenius方程式為主,即離子是activated hopping的運動方式。
對於含螯合基之聚胺基甲酸酯電解質而言,螯合基確實可以增加高分子溶合鋰離子的能力。而在低鋰鹽濃度時,鋰離子先與螯合基(EPIDA)作用。但隨鋰鹽濃度增加時,則與EPIDA、urethane和PEG等作用而造成PU結構型態的改變。此外,EPIDA增加溶合鋰離子的能力也限制了高分子鏈的運動性而使其最佳導電度為1.5×10-6 Scm-1。
對於以不同分子量PEG為軟鏈段之PUU而言,PEG分子量愈大,PUU的熔點(Tm)、吸收熱(DH)和硬鏈段Tg皆變大,即相分離程度增加。而且其電解質的軟鏈段Tg也較低,再加上硬鏈段較少的原因,所以其導電度也較高。而最佳導電度為以分子量2000的PEG為軟鏈段之PUU,可達3.0´10-5 Scm-1,已高於文獻所述的PU電解質之導電度。
此外,本研究也合成含羧酸基之聚尿酯(polyurea),經FTIR圖譜分析後,證實羧酸基會與鋰離子作用,也具有PU(或PUU)電解質的特色與導電行為,但其最佳導電度只有1.6×10-6 Scm-1。
Novel polyurethanes (PU), which were synthesized based on poly(ethylene glycol) (PEG) and polar units, were used as the matrices of solid polymer electrolytes based on lithium perchlorate (LiClO4) in this study. The matrixes include polyurethanes with chelating groups and polyurethaneureas (PUU) with carboxylic acid. The ability of dissolving lithium salts of the matrix, the interaction of the groups in the matrix with the Li+ ions, and ionic conductivity of polymer electrolytes were all interpreted.
In this study, the polymer has a certain degree of phase mixing of the soft and hard segments. Li+ ions coordinate with PEG, urethane, and urea of the polymer, which destroys the hydrogen bonding and the crystalline structure of PEG. The coordination of Li+ ions with the soft-segment not only arrests the local motion of the polymer segments but also forms physical cross-linking, increasing the soft-segment Tg. For all polymer electrolytes, the variation in Tg of the hard-segment displays different tendencies with increasing salt concentration, but the same tendency is a slight increase in the hard-segment Tg at high salt concentration.
For all polymer electrolytes, iconic conductivity increases, peaks, and then decreases with increasing salt concentration. The ionic conductivity is maximized when the state of the polymer electrolyte transfers into the amorphous state, due to the conductivity behavior mainly occurring in the amorphous domains of the polymer. The Arrhenius equation is suitable for the polymer electrolytes in this study and activated hopping is required for ionic transport.
For the polyurethane polymer electrolytes with chelating groups, the chelating groups surely increase the dissociation of lithium salt in polymer. At low salt concentration, the Li+ ions firstly coordinate with chelating groups (EPIDA). When the lithium salt concentration increases, the Li+ ions coordinate with EPIDA, urethane, and PEG of PU, which causes the change of the polymer morphology. The ability of dissolving lithium salts of EPIDA lacks the motion of the polymer chain, causing 1.5×10-6 Scm-1 of the highest ionic conductivity.
For the PUU based on different molecular weight(Mw) PEG, the higher Mw PEG in PUU leads the higher melting temperature, the larger endothermic heat ΔH, and the higher hard-segment Tg, indicating a increase in the degree of the phase separation of soft and hard segments. Additionally, the higher Mw PEG in PUU has the lower soft-segment Tg and the lower content of the hard segment, leading the higher ionic conductivity. One of the investigated polyurethaneurea electrolytes based on Mw2000 of PEG has the highest ionic conductivity as high as 3.0×10-5 Scm-1. This ionic conductivity is superior to any of the conductivities reported for polyurethane electrolytes systems in previous investigations
This study also synthesizes the polyurea with carboxylic acid. The FTIR spectroscopy is used to prove the interaction with the Li+ ion and the carboxylic group of the 3,5-Diaminobenzoic acid (DABA). The conductivity behavior of the polyurea polymer electrolytes is similar to that of PU (or PUU) polymer electrolytes, but the highest ionic conductivity is at 1.6×10-6 Scm-1.
參考文獻
1. (a)A. F. Heeger, A. G. MacDiarmid, H. Shirakawa, E. J. Louis, C. K. Chiang, J. Chem. Soc., Chem. Commun., 16 (1977) 578. (b)C. K. Chiang, Y. W. Park, A. J. Heeger, J. Chem. Phys., 69 (1978) 5098.
2. P. V. Wright, Br. Polym. J., 7 (1975) 319.
3. D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 14 (1973) 589.
4. M. B. Armand, “Second International meeting on Solid Electrolytes Extended Abstracts”, St. Andrews Ecosse, 1978.
5. M. B. Armand, “Fast Ion Transport in Solids”, P. Vashishta Ed., North Holland, New York, Sept 1979.
6. M. B. Armand, Solid State Ionics, 9~10 (1983) 745.
7. M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, Z. Ohtaki, Polym. J., 18 (1984) 711.
8. E. Tsuchidu, H. Ohno, K. Tsunemi, N. Kobayashi, Solid State Ionics, 11 (1983) 227.
9. N. Kobayashi, M. Uchiyama, K. Shigehara, E. Tsuchidu, J. Phys. Chem., 89 (1985) 987.
10. J. E. Weston, B. C. H. Steele, Solid State Ionics, 7 (1982) 75.
11. J. Przyluski, W. Wieczorek, Solid State Ionics, 36 (1989) 165.
12. F. Capuano, F. Croce, B. Scrosati, J. Electrochem. Soc., 138 (1991) 1918.
13. W. Gang, J. Roo, D. Brinkmann, F. Capuano, F. Croce, B. Scrosati, Solid State Ionics, 53~56 (1992) 1102.
14. F. Croce, B. Scrosati, G. Mariotto, Chem. Mater., 4 (1992) 1134.
15. B. Scrosati, F. Croce, Pol. Adv. Technol., 4 (1993) 198.
16. F. Croce, B. Scrosati, J. Power Sources, 43~44 (1993) 9.
17. P. M. Blonsky, D. F. Shriver, P. Austin, H. R. Allcock, J. Am. Chem. Soc., 106 (1984) 6854.
18. D. W. Xia, J. Smid, J. Polym. Sci., Polym. Lett., 22 (1984) 617.
19. D. W. Xia, D. Soltz, J. Smid, Solid State Ionics, 14 (1984) 221.
20. D. J. Bannister, G. R. Davies, I. M. Ward, J. E. Mclnlyre, Polymer, 25 (1984) 1600.
21. E. A. Rietman, M. L. Kaplan, R. J. Cava, Solid State Ionics, 25 (1987) 41.
22. D. F. Fish, I. M. Han, J. Smid, Polym. Commun., 27 (1986) 364.
23. P. G. Hall, G. R. Davies, E. McIntyre, I. M. Ward, D. J. Bannister, K. M. Le Brocq, Polym. Commun., 27 (1986) 98.
24. P. M. Blonsky, D. F. Shriver, J. Am. Chem. Soc., 106 (1984) 6854.
25. M. Watanabe, J. Power Sources, 20 (1987) 327.
26. P. M. Blonsky, D. F. Shriver, Solid State Ionics, 18 (1986) 258.
27. H. R. Alcock, P. S. Austin, Macromolecules, 19 (1986) 1508.
28. J. M. G. Cowie, K. Sadaghianizadeh, Solid State Ionics, 42 (1990) 243.
29. J. S. Gnanaraj, R. N. Karekar, S. Skaria, C. R. Rajan, S. Ponrathnam, Polymer, 38 (1997) 3709.
30. A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe, Macromolecules, 32 (1999) 1541.
31. Z. Florjanczyk, W. Bzducha, W. Wieczorek, E. Zygadol-Monikowska, W. Krawiec, S. H. Chung, J. Phys. Chem., 48 (1998) 8409.
32. Z. Florjanczyk, W. Bzducha, N. Langwald, J. R. Dygas, F. Krok, B. Misztal-Faraj, Electrochimica Acta, 45 (2000) 3563.
33. D. J. Banniser, G. R. Davies, I. M. Ward, J. E. McIntyre, Polymer, 25 (1984) 1291.
34. N. Kobyashi, M. Uchiyama, E. Tsuchida, Solid State Ionics, 17 (1986) 307.
35. E. Tsuchida, H. Ohno, N. Kobyashi, H. Ishizaka, Macromolecules, 21 (1988) 96.
36. D. Benraban, S. Sylla, F. Alloin, J. Y. Sanchez, M. Armand, Electrochim., 40 (1995) 2259.
37. S. Hu, S. B. Fang, Macromol. Rapid Commun., 19 (1998) 539.
38. J. Smid, I. Fish, Macromolecules, 21 (1989) 2684.
39. K. M. Abraham, M. Alamgir, J. Power Sources, 195 (1993) 43.
40. F. Croce, F. Gerace, G. Dauzemberg, S. Passerini, G. B. Appetecchi, B. Sorosati, Electrochimica Acta, 39 (1994) 2187.
41. B. Huang, Z. Wang, L. Chen, R. Xue, F. Wang, Solid State Ionics, 91 (1996) 279.
42. Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Solid State Ionics, 121 (1999) 141.
43. A. Stephan, T. Manuel, R. Thirunakaran, N. G. Renganathan, V. Sundaram, S. Pitchumani, N. Muniyandi, R. Gangadharan, P. Ramamoorthy, J. Power Sources, 81~82 (1999) 752.
44. M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, Makromol. Chem. RapidComm., 2 (1981) 741.
45. J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, P. C. Warren, Solid State Ionics, 86~88 (1996) 49.
46. D. F. Shriver, B. L. Papke, M. A. Ratner, R.Dupon, T. Wong, M. Brodwin, Solid State Ionics, 5 (1981) 83.
47. L. L. Yang, R. Huq, G. C. Farrington, Solid State Ionics, 18-19 (1986) 291.
48. L. L. Yang, A. R. McGhie, G. C. Farrington, J. Electrochem. Soc., 133 (1986) 1380.
49. J. J. Fonlanella, M. C. Wintersgill, J. P. Calame, J. Polym. Sci., Ploym. Phys. Ed., 23 (1985) 113.
50. A. Patrick, Solid State Ionics, 18-19 (1986) 1063.
51. T. M. A. Abrantes, L. J. Alcacer, C. A. C. Sequeira, Solid State Ionics, 18-19 (1986) 315.
52. P. Ferloni, Solid State Ionics, 18-19 (1986) 265.
53. Y. Takahashi, H. Tadokoro, Macromolecules, 6 (1973) 672.
54. B. L. Papke, J. Chem. Phys., 42 (1998) 193.
55. B. L. Papke, M. A. Ratner, D. F. Shriver, J. Electrochem. Soc., 129 (1982) 1434.
56. J. M. Parker, P. V. Wright, C. C. Lee, Polymer, 22 (1981) 1305.
57. F. L. Tanella, W. Bailey, D. Frydrych, G. C. Farrington, Solid State Ionics, 5 (1981) 681.
58. R. Dupon, D. H. Whitmore, D. F. Shriver, J. Electrochem. Soc., 128 (1981) 715.
59. C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Solid State Ionics, 11 (1983) 91.
60. D. F. Shriver, G. C. Farrington, Chem. Eng. News, 63 (1985) 42.
61. S. D. Druger, M. A. Ratner, A. Nitzan, Solid State Ionics, 9-10 (1983) 1115.
62. J. J. Fonlanella, M. C. Wintersgill, J. P. Calame, F. P. Pursel, D. R. Figueroa, Solid State Ionics, 9-10 (1983) 1139.
63. J. M. Blaney, P. K. Weiner, A. Dearing, P. A. Kollman, E. C. Jorgensen, S. J. Oatley, J. M. Burridge, C. C. F. Blake, J. Am. Chem. Soc., 104 (1982) 6247.
64. B. L. Ruke, M. A. Ratner, D. F. Shriver, J. Phys. Chem. Solid, 42 (1981) 493.
65. R. M. Jeremy, P. G. Martin, Polym. Commun., 27 (1986) 360.
66. B. L. Papke, M. A. Ratner, D. F. Shriver, J. Electrochem. Soc., 129 (1982) 1694.
67. P. R. Sorenson, T. Jasobsen, Electrochimica Acta, 27 (1982) 1671.
68. M. D. Armand, J. M. Chabagno, M. Duclot, Presented at Int. Conf. on Solid Electrolytes, St. Andrews Univ., UK, 1978.
69. D. Benrabh, S. Sylla, F. Alloin, J. Y. Sanchez, M. Arnamd, Electrochim. Acta, 40 (1995) 2259.
70. D. J. Bannister, G. R. Davies, I. M. Ward, Polymer, 25 (1984) 1291.
71. S. Ganapathiappan, K. Chen, D. F. Shriver, Macromolecules, 21 (1988) 2299.
72. L. C. Hardy, D. F. Shriver, Macromolecules, 17 (1984) 975.
73. N. Kobayashi, K. Shigehara, E. Tsuchida, Polym. Prepr. Japan, 33 (1984) 485.
74. N. Kobayashi, H. Ohno, Macromolecules, 21 (1988) 96.
75. Z. Florjanczyk, W. Bzducha, W. Wieczorek, E. Zygadol-Monikowska, W. Krawiec, S. H. Chung, J. Phys. Chem., 48 (1998) 8409.
76. N. Kobayashi, M. Uchiyama, E. Tsuchida, Solid State Ionics, 17 (1985) 307.
77. F. M. Gray, ”Solid Polymer Electrolytes”, VCH Publishers, New York, 1991.
78. C. Hepburn, “Polyurethane Elastomers”, 2ed ed., Elsevier Science, New York, 1992.
79. J. F. Le Nest, A. Gandini, H. Cheradame, Br. Polym. J., 20 (1988) 253.
80. M. Watanabe, S. Oohashi, K. Sanui, N. Ogata, T. Kobayashi, Z. Ohtaki, Macromolecules, 18 (1985) 1945.
81. A. W. McLennagham, R. A. Pethrick, Eur. Polym. J., 24/11 (1988) 1063.
82. A. W. McLennagham, A. Hooper, R. A. Pethrick, Eur. Polym. J., 25/12 (1989) 1297.
83. M. Seki, K. Sato, R. Yosomiya, Makromol. Chem., 193 (1997) 2917.
84. T. C. Wen, Y. J. Wang, T. T. Chang, C. H. Yang, Polymer, 40 (1999) 3979.
85. X. Wang, H. Li, X. Tang, F. C. Chang, J. Polym. Sci., Part B, Polym. Phys., 37 (1999) 837.
86. W. Xu, J. P. Belieres, C. A. Angell, Chem. Mater., 13 (2001) 575.
87. L. S. Teo, C. Y. Chen, J. F. Kuo, Macromolecules, 30 (1997) 1793.
88. S. C. Yoon, Y. K. Sung, B. D. Rater, Macromolecules, 23 (1990) 4351.
89. V. V. Zharkov, A. G. Strikovsky, T. E. Verteletskaya, Polymer, 34 (1993) 938.
90. J. D. Van Heumen, W. Wieczorek, M. Siekierski, J. R. Stevens, J. Phys. Chem., 99 (1995) 15142.
91. J. Brandrup, E. H. Immergut, “Polymer handbook”, 3rd ed., Wiley, New York, 1989.
92. M. M. Coleman, K. H. Lee, D. J. Skrovanek, P. C. Painter, Macromolecules, 19 (1986) 2149.
93. M. M. Coleman, D. J. Skrovanek, S. E. Howe, P. C. Painter, Macromolecules, 18 (1985) 299.
94. H. S. Lee, Y. K. Wang, S. L. Hsu, Macromolecules, 20 (1987) 2089.
95. T. C. Wen, M. S. Wu, Macromolecules, 32 (1999) 2712.
96. J. D. Van Heumen, J. R. Stevens, Macromolecules, 28 (1995) 4268.
97. A. Ferry, P. Jacobsson, Polymer, 37 (1996) 737.
98. C. C. Wang, C. Y. Chang, C. Y. Chen, Macromol. Chem. Phys., 202 (2001) 882.
99. C. Y. Chen, C. Y. Chen, J. Appl. Polym. Sci., 86 (2002) 1986.
100. C. A. Furtado, G. G. Silva, J. C. Machado, M. A. Pimenta, R.A. Silva, J. Phys. Chem. B, 103 (1999) 7102.
101. A. Nishimoto, K. Agehara, Macromolecules, 32 (1999) 1541.
102. A.Ferry, G. Oradd, P. Jacobson, J. Chem. Phys., 108 (1998) 7426.
103. F. M. Gray, “Polymer electrolytes”, 1st ed., The Royal Society of Chemistry, London, 1997.
104. Z. L. Peng, B. Wang, S. Q. Li, S. J. Wang, H. Liu, H. Q. Xie, Phys Lett A, 194 (1994) 228.
105. H. L. Wang, H. M. Kao, M. Digar, T. C. Wen, Macromolecules, 34 (2001) 529.
106. T. C. Wen, H. H. Kuo, A. Gopalan, Macromolecules, 34 (2001) 2958.
107. T. C. Wen, Y. J. Wang, T. T. Cheng, C. H. Yang, Polymer, 40 (1999) 3979.
108. T. C. Simon, M. Forsyth, D. R. MacFarlane, M. Garcia, M. E. Smith, J. H. Strange, Polymer, 39 (1998) 6261.
109. A. Marcos-Fernandez, A. E. Lozano, L. Gonzalez, A. Rodriguez, Macromolecules, 30 (1997) 3584.
110. W. J. Liang, C. L. Kuo, C. L. Lin, P. L. Kuo, J. Polym. Sci. Polym. Chem., 40 (2002) 1226.
111. H. L. Wang, H. M. Kao, T. C. Wen, Macromolecules, 33 (2000) 6910.
112. C. Berthier, W. Gorecki, M. Minier, Solid State Ionics, 11 (1983) 91.