簡易檢索 / 詳目顯示

研究生: 黃信凱
Huang, Hsin-Kai
論文名稱: 合成金屬鋁矽酸鹽孔洞材料在催化反應之研究
A Study on the Synthesis of Porous Metal Aluminosilicate and the Application in Catalytic Reaction
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 蒸汽重組反應脫氧加氫反應金屬鋁酸鹽鋁矽酸鎳
外文關鍵詞: steam reforming reaction, deoxygenation reaction, metal aluminate, nickel aluminosilicate
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要可分為兩大部分,第一部分為針對過渡金屬觸媒-鋁酸銅鎳於甲醇蒸汽重組反應之催化結果進行討論,及嘗試引入氧化矽合成高分散性鋁矽酸鎳觸媒,並進行油品脫氧加氫反應之催化測試。第二部分為為增加以無機模板法製作觸媒之應用性,嘗試以相同之概念,進行鹼土金族觸媒-鋁酸鎂及鋁酸鈣鹼性觸媒之合成。
    嘗試以30公升級之加熱反應槽進行放大規模的製程,每次可得約600克之鋁酸銅鎳觸媒,並將觸媒用於甲醇蒸汽重組反應中,經由銅-鎳活性位間之協同作用,下降催化反應所需溫度、降低產物中甲烷之生成與觸媒中之積碳含量,並可得到高純度之氫氣,且產氫效能與商用觸媒相近。而將催化後之觸媒經高溫燒結後,仍可再用於蒸氣重組反應之催化中,並維持氫氣之高產率。
    而為了降低鋁酸鎳觸媒中氧化鎳之聚集分相,藉由添加入適量之氧化矽,於反應過程中和氫氧化鎳重組,可得到 NiAl2O4 及 Ni silicate 之混合孔洞材料,並於脫氧加氫反應中仍具良好的催化效能。
    以活性氧化鋁為氧化鋁源,以硝酸鎂作為鎂離子來源,於合成過程中,透過反應過程中各實驗參數控制,可改變氫氧化鋁及氫氧化鎂間縮合聚合之程度,於水熱反應及鍛燒過後,脫去氫氧化物間之水分子,生成Mg-O-Al鍵結,使得材料之密度增加,並產生孔洞狀結構,及降低結構崩解而引起氧化鎂及氧化鋁分相之機會。並藉由不同氧化鋁源進行合成,得到不同材料尺度及孔徑分布之鋁酸鎂孔洞材料。
    而在鋁酸鈣之合成中,分別以硝酸鋁及硝酸鈣作為氧化鋁源及鈣離子來源,於反應中加入碳酸鈉溶液產生碳酸鈣沉澱,有效的下降反應之 pH 值,且經由氫氧化鋁、單水鋁石及碳酸鈣間之靜電作用力穩定各前驅物,並有利於降低高溫燒結之固態反應所需溫度及氧化鈣的生成,得到高結晶度之鋁酸鈣孔洞材料。

    An organic template-free method is proposed for the synthesis of metal aluminate catalysts without the need for surfactants. In the proposed method, composite metal hydroxides are first formed under the combined effects of electrostatic forces and hydrogen bonding between the hydrated aluminum ions, metal ions and metal hydroxides. The desired metal aluminates are then obtained via calcination. Copper / nickel aluminate is produced in a large-scale synthesis system with a specific surface area of 135.8~170.3 m2g-1. The catalyst is used in the methanol steam reforming reaction process and is shown to have a high conversion efficiency and hydrogen yield. Furthermore, by sintering the spent catalyst at high temperature, high crystallinity CuAl2O4 phase is obtained for reuse in a further steam reforming reaction. Nickel aluminate catalyst is prepared using the same synthesis method and is shown to have a partial nickel oxide phase. The introduction of silica prompts the reassembly of the nickel hydroxide, and therefore improves the dispersion of the catalyst and prompts a change in the hydrocarbon product composition following the deoxygenation reaction. The proposed method is additionally used to synthesize magnesium aluminate and calcium aluminate. It is shown that through a suitable control of reaction parameters, magnesium aluminate with a high specific surface area of 166 m2g-1 can be obtained. Notably, the synthesis mechanism can be changed through the selection of different alumina sources; resulting in a change in both the material scale and the pore size distribution. When applying the same synthesis method to the preparation of calcium aluminate, the pH value of the reaction solution is too high, which lead to some aluminum ions remain in the reaction solution and degrade the yield accordingly. Thus, by adding sodium carbonate solution to the reaction solution, the precipitated pH value of calcium ions is substantially reduced. Hence, the precipitation of the aluminum ions is enhanced, and with appropriate sintering temperature, the calcium aluminate can be obtained.

    第一章 序論 1 1.1 產氫反應簡介 1 1.2 生質能簡介 3 1.3 綠色柴油簡介 3 1.4 孔洞材料簡介 5 1.5 中孔洞金屬氧化物簡介 6 1.6 氧化鋁簡介 6 1.7 水熱法簡介 8 1.8 複合金屬氧化物材料合成 10 1.9 實驗動機 11 第二章 合成與鑑定 13 2.1 實驗藥品 13 2.2 實驗步驟與流程示意圖 14 2.2.1 以30公升級加熱槽合成鋁酸銅鎳孔洞材料 14 2.2.2 合成高分散性鋁矽酸鎳孔洞材料 15 2.2.3 以無機模板法合成鋁酸鎂孔洞材料 16 2.2.4 以無機模板法合成鋁酸鈣孔洞材料 17 2.3儀器鑑定分析 18 2.3.1 X-射線粉末繞射光譜 (Powder X-Ray Diffraction ; PXRD) 18 2.3.2 氮氣等溫吸附/脫附測量 (N2 Adsorption / Desorption Isotherm) 19 2.3.3 熱重量分析儀 (Thermogravimetric Analysis; TGA) 23 2.3.4 穿透式電子顯微鏡 (Transmission Electron Microscopy; TEM) 24 2.3.5 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy; FTIR) 24 2.3.6 火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer; AA) 25 第三章 鋁酸銅鎳觸媒用於甲醇蒸汽重組反應及鋁矽酸鎳觸媒用於脫氧加氫反應 27 3-1 研究動機 27 3.2 以 30 公升級加熱槽合成鋁酸銅鎳材料 28 3.3 鋁酸銅鎳觸媒合成與鑑定 29 3.4 鋁酸銅鎳觸媒用於甲醇蒸汽重組反應並進行催化後之觸媒分析 31 3.5 鋁酸銅鎳觸媒用於長時間甲醇蒸汽重組反應並與商用觸媒比較 34 3.6 嘗試藉由高溫鍛燒活化鋁酸銅鎳觸媒並進行甲醇蒸汽重組反應 38 3.7 鋁酸銅鎳觸媒於甲醇蒸汽重組反應之反應機制 40 3.8 鋁酸鎳的合成及應用於脫氧加氫反應之催化 43 3.9 氧化矽的添加對於鋁酸鎳觸媒之影響 46 第四章 鋁酸鎂、鋁酸鈣孔洞材料之合成 50 4-1 研究動機 50 4-2 氧化鋁源之選擇 52 4-3 選擇反應 pH 值 53 4-4 選擇反應之水熱時間 58 4-5 鍛燒溫度影響 62 4-6 改變鎂/鋁間莫耳數比 63 4-7 比較不同氧化鋁源合成之鋁酸鎂孔洞材料性質 65 4-8 以活性氧化鋁合成鋁酸鎂孔洞材料之反應機構推導 68 4-9 鋁酸鈣孔洞材料之合成 69 4-10 藉由添加碳酸鈉溶液協助合成鋁酸鈣材料 73 4-11 鍛燒溫度之影響 77 4-12 合成鋁酸鈣材料之反應機制討論 79 第五章 總結 80 參考文獻 82

    1 Pérez-Hernández, R. et al. Synthesis and characterization of bimetallic Cu–Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy 33, 4569-4576, (2008).
    2 Palo, D. R., Dagle, R. A. & Holladay, J. D. Methanol steam reforming for hydrogen production. Chemical reviews 107, 3992-4021 (2007).
    3 林毓勝. 甲醇-水蒸汽重組產氫整合反應器性能之實驗探討 碩士 thesis, 國立中興大學, (2010).
    4 Iulianelli, A., Ribeirinha, P., Mendes, A. & Basile, A. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renewable and Sustainable Energy Reviews 29, 355-368 (2014).
    5 Deo, G. & Wachs, I. E. Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol. Journal of catalysis 146, 323-334 (1994).
    6 Alejo, L., Lago, R., Pena, M. & Fierro, J. Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts. Applied Catalysis A: General 162, 281-297 (1997).
    7 Udani, P. P. C., Gunawardana, P. V. D. S., Lee, H. C. & Kim, D. H. Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts. International Journal of Hydrogen Energy 34, 7648-7655, (2009).
    8 Kim, D. H., Kim, J. H., Jang, Y. S. & Kim, J. C. Hydrogen production by oxidative steam reforming of methanol over anodic aluminum oxide-supported Cu-Zn catalyst. International Journal of Hydrogen Energy 44, 9873-9882, (2019).
    9 邱筱雯. 氧化矽擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究 碩士 thesis, 國立中央大學, (2007).
    10 Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A. & Murtaza, M. A. Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Critical reviews in food science and nutrition 55, 1514-1528 (2015).
    11 Šimáček, P., Kubička, D., Šebor, G. & Pospíšil, M. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel 88, 456-460, (2009).
    12 Janampelli, S. & Darbha, S. Hydrodeoxygenation of Vegetable Oils and Fatty Acids over Different Group VIII Metal Catalysts for Producing Biofuels. Catalysis Surveys from Asia 23, 90-101, (2019).
    13 蘇脩聖, 賴銘彬, 林克衛 & 陳偉仁. 綠色柴油對柴油引擎性能與排污改善分析探討. 59-71 (2017).
    14 Gosselink, R. W. et al. Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem 6, 1576-1594, (2013).
    15 Srifa, A., Faungnawakij, K., Itthibenchapong, V. & Assabumrungrat, S. Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chemical Engineering Journal 278, 249-258 (2015).
    16 Dartt, C., Khouw, C., Li, H.-X. & Davis, M. Synthesis and physicochemical properties of zeolites containing framework titanium. Microporous Materials 2, 425-437 (1994).
    17 Kresge, C., Leonowicz, M., Roth, W. J., Vartuli, J. & Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 359, 710-712 (1992).
    18 Huo, Q. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317-321 (1994).
    19 Antonelli, D. M. & Ying, J. Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angewandte Chemie International Edition in English 34, 2014-2017 (1995).
    20 Antonelli, D. M., Nakahira, A. & Ying, J. Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorganic Chemistry 35, 3126-3136 (1996).
    21 Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152-155 (1998).
    22 Dodoo-Arhin, D., Nuamah, R. A., Agyei-Tuffour, B., Obada, D. O. & Yaya, A. Awaso bauxite red mud-cement based composites: Characterisation for pavement applications. Case Studies in Construction Materials 7, 45-55, (2017).
    23 Shirai, T., Watanabe, H., Fuji, M. & Takahashi, M. Structural properties and surface characteristics on aluminum oxide powders. セラミックス基盤工学研究センター年報 9, 23-31 (2010).
    24 Wefers, K. & Misra, C. Oxides and hydroxides of aluminum. Vol. 19 (Alcoa Laboratories Pittsburgh, 1987).
    25 Kim, H. N. & Lee, S. K. Effect of particle size on phase transitions in metastable alumina nanoparticles: A view from high-resolution solid-state 27Al NMR study. American Mineralogist 98, 1198-1210 (2013).
    26 Iijima, S., Yumura, T. & Liu, Z. One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH). Proceedings of the National Academy of Sciences 113, 11759-11764 (2016).
    27 Zhitova, E. S. et al. Dritsite, Li2Al4(OH)12Cl2·3H2O, a New Gibbsite-Based Hydrotalcite Supergroup Mineral. Minerals 9, 492 (2019).
    28 奈米材料科技原理與應用. (全華科技圖書, 2003).
    29 Walton, R. I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31, 230-238, (2002).
    30 Laudise, R. Hydrothermal synthesis of single crystals. Prog. Inorg. Chem 3, 1-47 (1962).
    31 Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of catalysis 115, 301-309 (1989).
    32 Nares, R., Ramirez, J., Gutiérrez-Alejandre, A., Louis, C. & Klimova, T. Ni/Hβ-zeolite catalysts prepared by deposition− precipitation. The Journal of Physical Chemistry B 106, 13287-13293 (2002).
    33 Garcia, F. A. et al. Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous and mesoporous materials 113, 562-574 (2008).
    34 Plabst, M., McCusker, L. B. & Bein, T. Exceptional ion-exchange selectivity in a flexible open framework lanthanum (III) tetrakisphosphonate. Journal of the American Chemical Society 131, 18112-18118 (2009).
    35 Chi, Y. et al. Synthesis and characterization of fluorinated aminoalkoxide and iminoalkoxide gallium complexes: Application in chemical vapor deposition of Ga2O3 thin films. Organometallics 23, 95-103 (2004).
    36 林麗娟. X 光繞射原理及其應用. X 光材料分析技術與應用專題 86, 100-109 (1994).
    37 楊家銘. 奈米孔洞材料之物理吸脫附分析. 科儀新知, 32-38 (2005).
    38 林昆霖. 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 國家奈米元件實驗室奈米通訊 20, 34-38 (2013).
    39 李耀昌 & 陳慶曰. 高解析傅立葉轉換紅外光譜顯微術之原理與應用. 科儀新知, 20-28 (2005).
    40 Liguras, D. K., Kondarides, D. I. & Verykios, X. E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental 43, 345-354, (2003).
    41 Le Valant, A., Can, F., Bion, N., Duprez, D. & Epron, F. Hydrogen production from raw bioethanol steam reforming: Optimization of catalyst composition with improved stability against various impurities. International Journal of Hydrogen Energy 35, 5015-5020, (2010).
    42 Vizcaino, A., Carrero, A. & Calles, J. Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. International Journal of Hydrogen Energy 32, 1450-1461, (2007).
    43 Lin, L. et al. Investigation of carbon deposition induced by pyrolytic decomposition of ethylene. RSC Advances 7, 29639-29644, (2017).
    44 Tu, Y.-J. & Chen, Y.-W. Effects of alkaline-earth oxide additives on silica-supported copper catalysts in ethanol dehydrogenation. Industrial & engineering chemistry research 37, 2618-2622 (1998).
    45 Spencer, M. S. Stable and metastable metal surfaces in heterogeneous catalysis. Nature 323, 685-687 (1986).
    46 Yong, S. T., Ooi, C. W., Chai, S. P. & Wu, X. S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. International Journal of Hydrogen Energy 38, 9541-9552, (2013).
    47 MARIÑO, F. J., CERRELLA, E. G., DUHALDE, S., JOBBAGY, M. & LABORDE, M. A. HYDROGEN FROM STEAM REFORMING OF ETHANOL.CHARACTERIZATION AND PERFORMANCE OF COPPER-NICKEL SUPPORTED CATALYSTS. Int. J. Hydrogen Energy 23, 1095-1101 (1998).
    48 Mariño, F., Boveri, M., Baronetti, G. & Laborde, M. Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts. Effect of Ni. International Journal of Hydrogen Energy 26, 665-668 (2001).
    49 Wang, X. et al. Steam reforming of dimethyl ether over Cu–Ni/γ-Al2O3 bi-functional catalyst prepared by deposition–precipitation method. International Journal of Hydrogen Energy 35, 4060-4068, (2010).
    50 Khzouz, M., Gkanas, E. I., Du, S. & Wood, J. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming. Fuel 232, 672-683, (2018).
    51 Mrad, M., Gennequin, C., Aboukaïs, A. & Abi-Aad, E. Cu/Zn-based catalysts for H2 production via steam reforming of methanol. Catalysis Today 176, 88-92, (2011).
    52 Rameshan, C. et al. Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation. Angew Chem Int Ed Engl 51, 3002-3006, (2012).
    53 Khzouz, M., Wood, J., Pollet, B. & Bujalski, W. Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. International Journal of Hydrogen Energy 38, 1664-1675, (2013).
    54 Kubička, D. & Kaluža, L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General 372, 199-208 (2010).
    55 Zulkepli, S. et al. Modified mesoporous HMS supported Ni for deoxygenation of triolein into hydrocarbon-biofuel production. Energy Conversion and Management 165, 495-508, (2018).
    56 Yang, Y., Ochoa-Hernández, C., de la Peña O’Shea, V. A., Coronado, J. M. & Serrano, D. P. Ni2P/SBA-15 As a Hydrodeoxygenation Catalyst with Enhanced Selectivity for the Conversion of Methyl Oleate Into n-Octadecane. ACS Catalysis 2, 592-598, (2012).
    57 林楷哲. 中孔洞金屬矽酸鹽與鋁酸鹽材料的合成與應用 碩士 thesis, 國立成功大學, (2019).
    58 Sá, S., Silva, H., Brandão, L., Sousa, J. M. & Mendes, A. Catalysts for methanol steam reforming—a review. Applied Catalysis B: Environmental 99, 43-57 (2010).
    59 Liao, P.-H. & Yang, H.-M. Preparation of Catalyst Ni–Cu/CNTs by Chemical Reduction with Formaldehyde for Steam Reforming of Methanol. Catalysis Letters 121, 274-282, (2007).
    60 De Rogatis, L., Montini, T., Lorenzut, B. & Fornasiero, P. NixCuy/Al2O3 based catalysts for hydrogen production. Energy & Environmental Science 1, 501-509, (2008).
    61 Lytkina, A. A., Zhilyaeva, N. A., Ermilova, M. M., Orekhova, N. V. & Yaroslavtsev, A. B. Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy 40, 9677-9684, (2015).
    62 Sekizawa, K., Yano, S.-i., Eguchi, K. & Arai, H. Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides. Applied Catalysis A: General 169, 291-297 (1998).
    63 Oguchi, H. et al. Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Applied Catalysis A: General 281, 69-73, (2005).
    64 Akdim, O. et al. Oxidative Steam Reforming of Ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: Effect of Metal and Support on Reaction Mechanism. Topics in Catalysis 51, 22-38, (2008).
    65 Matsumura, Y. & Ishibe, H. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol–gel method. Applied Catalysis B: Environmental 86, 114-120, (2009).
    66 Wang, X. et al. Cu/ZnO/SiO2 catalyst synthesized by reduction of ZnO-modified copper phyllosilicate for dimethyl ether steam reforming. Applied Catalysis A: General 540, 37-46, (2017).
    67 Hassanzadeh-Tabrizi, S. A., Pournajaf, R., Moradi-Faradonbeh, A. & Sadeghinejad, S. Nanostructured CuAl2O4: Co-precipitation synthesis, optical and photocatalytic properties. Ceramics International 42, 14121-14125, (2016).
    68 Takezawa, N. & Iwasa, N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today 36, 45-56 (1997).
    69 Ma, K. et al. Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chem Sci 10, 2578-2584, (2019).
    70 Pasupulety, N., Gunda, K., Liu, Y., Rempel, G. L. & Ng, F. T. Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Applied Catalysis A: General 452, 189-202 (2013).
    71 Zuo, H. et al. Hydrodeoxygenation of Methyl Palmitate over Supported Ni Catalysts for Diesel-like Fuel Production. Energy & Fuels 26, 3747-3755, (2012).
    72 Kumar, P., Yenumala, S. R., Maity, S. K. & Shee, D. Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General 471, 28-38, (2014).
    73 Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E. & Lycourghiotis, A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental 181, 156-196, (2016).
    74 Kesić, Ž., Lukić, I., Zdujić, M., Mojović, L. & Skala, D. Calcium oxide based catalysts for biodiesel production: a review. Chemical Industry and Chemical Engineering Quarterly 22, 391-408 (2016).
    75 Nayebzadeh, H., Saghatoleslami, N., Haghighi, M. & Tabasizadeh, M. Influence of fuel type on microwave-enhanced fabrication of KOH/Ca12Al14O33 nanocatalyst for biodiesel production via microwave heating. Journal of the Taiwan Institute of Chemical Engineers 75, 148-155 (2017).
    76 Li, Z.-s., Cai, N.-s. & Huang, Y.-y. Effect of preparation temperature on cyclic CO2 capture and multiple carbonation−calcination cycles for a new Ca-based CO2 sorbent. Industrial & engineering chemistry research 45, 1911-1917 (2006).
    77 Ma, X. et al. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture. Chemical Engineering Journal 361, 235-244 (2019).
    78 Zhang, X. Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support. Materials Chemistry and Physics 116, 415-420, (2009).
    79 Sanjabi, S. & Obeydavi, A. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol–gel method. Journal of Alloys and Compounds 645, 535-540, (2015).
    80 Basile, F., Fornasari, G., Rosetti, V., Trifirò, F. & Vaccari, A. Effect of the Mg/Al ratio of the hydrotalcite-type precursor on the dispersion and activity of Rh and Ru catalysts for the partial oxidation of methane. Catalysis Today 91-92, 293-297, (2004).
    81 Guo, J., Lou, H., Zhao, H., Wang, X. & Zheng, X. Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Materials Letters 58, 1920-1923, (2004).
    82 Bocanegra, S. A., Ballarini, A. D., Scelza, O. A. & de Miguel, S. R. The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Materials Chemistry and Physics 111, 534-541, (2008).
    83 Di Michele, A. et al. Steam reforming of ethanol over Ni/MgAl2O4 catalysts. International Journal of Hydrogen Energy 44, 952-964, (2019).
    84 Di Cosimo, J., Díez, V., Ferretti, C. & Apesteguía, C. Basic catalysis on MgO: generation, characterization and catalytic properties of active sites. Royal Society of Chemistry 26, 1-28 (2014).
    85 Sikander, U., Sufian, S. & Salam, M. A review of hydrotalcite based catalysts for hydrogen production systems. International journal of hydrogen energy 42, 19851-19868 (2017).
    86 Tongamp, W., Zhang, Q. & Saito, F. Mechanochemical route for synthesizing nitrate form of layered double hydroxide. Powder Technology 185, 43-48 (2008).
    87 Um, N. & Hirato, T. Precipitation behavior of Ca(OH)2, Mg(OH)2, and Mn(OH)2 from CaCl2, MgCl2, and MnCl2 in NaOH-H2O solutions and study of lithium recovery from seawater via two-stage precipitation process. Hydrometallurgy 146, 142-148 (2014).
    88 Mokhtar, M., Inayat, A., Ofili, J. & Schwieger, W. Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: A comparative study. Applied clay science 50, 176-181 (2010).
    89 Hayashi, K., Matsuishi, S., Hirano, M. & Hosono, H. Formation of Oxygen Radicals in 12CaO·7Al2O3: Instability of Extraframework Oxide Ions and Uptake of Oxygen Gas. J. Phys. Chem. B 108, 8920-8925 (2004).
    90 Altay, A., Carter, C. B., Arslan, I. & Gülgün, M. A. Crystallization of CaAl4O7 and CaAl12O19 powders. Philosophical Magazine 89, 605-621, (2009).
    91 Băbuţă, R., Lazău, I. & Păcurariu, C. Study of CaO·2Al2O3 formation by polymeric precursor method. Journal of Thermal Analysis and Calorimetry 112, 339-344, (2013).
    92 SUZUKI, Y., KONDO, N. & OHJI, T. In Situ Synthesis and Microstructure of Porous CaAl4O7 Monolith and CaAl4O7/CaZrO3 Composite. Journal of the Ceramic Society of Japan 109, 205-209 (2001).
    93 Yoon, S. G., Kim, S. W., Hirano, M., Yoon, D. H. & Hosono, H. Pore-Free 12CaO·7Al2O3 Single-Crystal Growth by Melt State Control Using the Floating Zone Method. Cryst. Growth Des. 8, 1271-1275 (2007).
    94 Li, C., Hirabayashi, D. & Suzuki, K. Synthesis of higher surface area mayenite by hydrothermal method. Materials Research Bulletin 46, 1307-1310, (2011).
    95 Gu, S., Fu, B., Fujita, T. & Ahn, J. W. Thermodynamic Simulations for Determining the Recycling Path of a Spent Lead-Acid Battery Electrolyte Sample with Ca(OH)2. Applied Sciences 9, 2262 (2019).
    96 Andrade, T. L., Santos, G. L., Pandolfelli, V. C. & Oliveira, I. R. Otimização da síntese das fases de cimento de aluminato de cálcio para fins biomédicos. Cerâmica 60, 88-95 (2014).
    97 Ersoy, B. Effect of pH and polymer charge density on settling rate and turbidity of natural stone suspensions. International Journal of Mineral Processing 75, 207-216, (2005).
    98 Lefèvre, G. et al. Determination of isoelectric points of metals and metallic alloys by adhesion of latex particles. Journal of colloid and interface science 337, 449-455 (2009).
    99 Sharifi, L., Beyhaghi, M., Ebadzadeh, T. & Ghasemi, E. Microwave-assisted sol–gel synthesis of alpha alumina nanopowder and study of the rheological behavior. Ceramics International 39, 1227-1232, (2013).

    下載圖示 校內:2025-07-28公開
    校外:2025-07-28公開
    QR CODE