| 研究生: |
吳晉瑋 Wu, Jin-Wei |
|---|---|
| 論文名稱: |
空庫防淤操作對魚類群落組成之影響 Empty Flushing Operation Effects on Fish Community Composition |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 空庫防淤 、排渾蓄清 、棲地利用 、魚類恢復 、中度干擾 |
| 外文關鍵詞: | empty flushing, releasing muddy and storing clear, Habitat use, Fish recovery, Intermediate disturbance |
| 相關次數: | 點閱:103 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於台灣地狹人稠、理想的築壩地點已遍布聚落、可預期的顯著環境影響和不斷增漲的環保意識,興建新水庫已益發困難,無法開源的限制下僅可節流,排除沉積物以維持既有水庫的庫容,最高效的方法要屬水力排砂,阿公店水庫為台灣唯一於汛期期間進行空庫排砂操作的水庫。
本研究分析了位於阿公店水庫(高雄市)上中下游4個樣站所收集2016至2019年的魚類捕獲數據及水文水質數據,以分析影響魚類的棲息地環境因子,發現水位標高、溶氧及pH值具有相關性。比對水庫歷年的各時期水位變化,以比較空庫防淤期前後的魚類群落組成,觀察到每年第3季所進行的空庫防淤操作,將水庫水位降低,魚類多樣性會呈現上升並達到年度的高峰,研判為(1)低水位時棲地呈現出較多淺灘深瀨之多樣性棲地;(2)水位較低時較易捕捉底棲型魚類;(3)為「中度干擾」帶來的現象,改變了水庫中入侵物種和本地魚類之間的競爭。總的來說,本研究結果表明,這種水庫管理方案可能會改善魚類群落的多樣性,同時也減少了水庫中入侵魚類的數量。研究亦表明了如果該操作將水庫排空,確實帶來了極高的排砂效益,但也對魚類造成一定程度的影響,均勻度指數最為明顯,其次是數量,再次是多樣性指數。
本研究亦建議於空庫防淤期營造深水蓄水區做為魚類群落的避難區,用以平衡完全排空庫水的排砂操作可能帶來的高度干擾問題,以更趨近於「中度干擾」,利用適當程度的干擾以達到維持或提高魚類群落多樣性的目標,不失為生態友善的水庫管理方法。
In order to realize the impact of the environmental factors on fish habitats, this study analyzes fish and water quality data which are collected from 4 sample stations located in the upper, middle and lower area in the Agongdian Reservoir from 2016 to 2019. It can be found that the water level, dissolved oxygen and the pH value are related to fish diversity data. Comparing the changes of the water level over the years and the fish community composition for the empty flushing period, it is observed that the empty flushing operation turns out the increasing fish diversity in the third season. At the peak fish diversity of the year, it is thought that (1) the river appears more habitat diversity when the water level is low; (2) it is easier to capture the benthic fish when the water level is low; and (3) it is considered showing "Intermediate disturbance" that changed the competition between invasive and endemic fish species in the reservoir after the empty flushing operation. Firstly, the results of this study indicate that this operational method may improve the diversity of fish community and also reduce the number of invasive fish in the reservoir. Secondly, that are not only the extremely high benefits of sand discharge but also a certain degree of impact on fish by flushing operation. The evenness index is the most obvious, followed by the quantity, and then the diversity index.
1. 中央研究院,台灣魚類資料庫,http://fishdb.sinica.edu.tw,2020。
2. 中央研究院,臺灣生物多樣性入口網,http://taibif.tw,2020。
3. 杜小倩,魚類適合度曲線通用性之研究。國立成功大學水利及海洋工程研究所碩士論文,台南市。取自https://hdl.handle.net/11296/53h4yy,2012。
4. 邱宏彬,河道特性與魚類棲地利用之研究。國立成功大學水利及海洋工程學系博士論文,台南市。取自https://hdl.handle.net/11296/7j4uw4,2018。
5. 呂映昇、孫建平,魚類棲地多樣性與空間層級系統之關係探討及其於溪流復育之應用。台灣生物多樣性研究,12(1),43-60,2010。
6. 金門國家公園管理處、國立台灣師範大學生物學系,金門國家公園昆蟲多樣性之研究,2000。
7. 曾晴賢,台灣省政府教育廳,台灣的淡水魚類,1986。
8. 葉建緯、陳永超、陳錦嫣、陳文福,阿公店水庫防淤操作成效分析之研究。水土保持學報,48(1),1589-1606,2016。
9. 蔡元融、李鎭鍵,阿公店水庫空庫防淤操作紀錄與檢討。中華防災學刊,9(1),53-61,2017。
10. 經濟部水利署南區水資源局,阿公店水庫抽泥入海可行性評估及機械清淤工作規劃設計,2020。
11. 經濟部水利署南區水資源局,104年度曾文、牡丹、阿公店、高屏溪、甲仙攔河堰水質檢驗分析計畫,2015。
12. 經濟部水利署南區水資源局,105年度曾文、牡丹、阿公店、高屏溪、甲仙攔河堰水質檢驗分析計畫,2016。
13. 經濟部水利署南區水資源局,106年度曾文、牡丹、阿公店、高屏溪、甲仙攔河堰水質檢驗分析計畫,2017。
14. 經濟部水利署南區水資源局,107年度曾文、牡丹、阿公店、高屏溪、甲仙攔河堰水質檢驗分析計畫,2018。
15. 經濟部水利署南區水資源局,108年度曾文、牡丹、阿公店、高屏溪、甲仙攔河堰水質檢驗分析計畫,2019。
16. 蘇瑋哲(2008),魚類個體生態矩陣於溪流棲息地模擬之應用。國立成功大學水利及海洋工程學系博士論文,台南市。取自https://hdl.handle.net/11296/4hp57e,2008。
17. 森下郁子,自然學研究創刊號,社團法人淡水生物研究所,2020。(日文)
18. Brandt S. A., Reservoir desiltation by means of hydraulic flushing: sedimentological and geomorphological effects in reservoirs and downstream reaches as illustrated by the Cachí Reservoir and the Reventazon River, Costa Rica. Institute of Geography, University of Copenhagen, 231, 1999.
19. Buermann Y., Du Preez H.H., Steyn G.J., Harmse J.T., and Deacon A., Suspended silt concentrations in the lower Olifants River (Mpumalanga) and the impact of silt releases from the Phalaborwa Barrage on water quality and fish survival. Koedoe, 38(2), 121-130, 1995.
20. Chen W., and Olden J. D., Designing flows to resolve human and environmental water needs in a dam-regulated river. Nature Communications, 8(1), 2017.
21. Connell J. H., Diversity in Tropical Rain Forests and Coral Reefs. Science, 199(4335), 1302-1310, 1978.
22. Diamond J.,and Case T. J., Overview: introductions, extinctions, exterminations, and invasions. Community Ecology, 65-79, 1986.
23. Dynesius M., and Nilsson C., Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science, 266(5186), 753-762, 1994.
24. Esmaeili T., Sumi T., Kantoush S. A., Kubota Y., Haun S., and Rüther B., Three-Dimensional Numerical Study of Free-FlowSediment Flushing to Increase the Flushing Efficiency: A Case-Study Reservoir in Japan. Water, 9(11), 900, 2017.
25. Fan J., and Morris G., Reservoir Sedimentation. II: Reservoir Desiltation and Long‐Term Storage Capacity. Journal of Hydraulic Engineering, 118(3), 1992.
26. Fayolle S., Cazaubon A., Comte K.,and Franquet E., The Intermediate Disturbance Hypothesis: application of this concept to the response of epilithon in a regulated Mediterranean river (Lower-Durance, southeastern France). Archiv fur Hydrobiologie, 143(1), 57-77, 1998.
27. Gutzmer M. P., King J. W., Overhue D. P.,and Chrisp E. Y., Fish species-richness trends in the Niobrara River, Nebraska, below the Spencer Dam. Transactions of the Nebraska Academy of Sciences, 28, 57-63, 2002.
28. Grimardias D., Guillard J., Cattanéo F., Drawdown flushing of a hydroelectric reservoir on the Rhone River: ^Impacts on the fish community and implications for the sedimentmanagement. Journal of Environmental Management, 197, 239-249, 2017.
29. Kimbro D. L., and Grosholz E., Disturbance influences oyster community richness and evenness, but not diversity. Ecology, 87(9), 2378-2388, 2006.
30. Kondolf G. M., Five Elements for Effective Evaluation of Stream Restoration. Restoration ecology, 3(2), 133-136, 1995.
31. Kondolf G. M., Rubin Z. K., and Minear J. T., Dams on the Mekong: Cumulative sediment starvation. Water Resources Research, 50(6), 5158-5169, 2014.
32. Lai J. S., and Shen H. W., Flushing sediment through reservoirs. Journal of Hydraulic Research, 34(2), 237-255, 1996.
33. Morris G. L., and Fan J., Reservoir sedimentation handbook. 1998.
34. Murphy C. A., Taylor G., Pierce T., Arismendi I.,and Johnson S. L., Short‐term reservoir draining to streambed for juvenile salmon passage and non‐native fish removal. Ecohydrology, 12(6), e2096, 2019.
35. Owens P. N., Batalla R. J., Collins A. J., Gomez B., Hicks D. M., Horowitz A. J., Kondolf G. M., Marden M., Page M. J., Peacock D. H., Petticrew E. L., Salomons W., and Trustrum N. A., Fine‐grained sediment in river systems: environmental significance and management issues. River Research and Applications 21(7), 693-717, 2005.
36. Poff N. L., and Schmidt J., How dams can go with the flow. Science, 353(6304), 1099-1100, 2016.
37. Schwartz J., and Herricks E. E., Fish use of ecohydraulic‐based mesohabitat units in a low‐gradient Illinois stream: implications for stream restoration. Aquatic Conservation Marine and Freshwater Ecosystems, 18(6), 852-866, 2008.
38. Suen J. P., and Herricks E. E., Investigating the causes of fish community change in the Dahan River (Taiwan) using an autecology matrix. Hydrobiologia 568(1), 317-330, 2006.
39. Tiffan K., Garland R. D.,and Rondorf D., Predicted changes in subyearling fall Chinook Salmon rearing and migratory habitat under two drawdown scenarios for John Day Reservoir, Columbia River. North American Journal of Fisheries Management, 26(4), 894–907, 2006.
40. Townsend C. R., Scarsbrook M. R., Dolédec S., The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography, 42(5), 938-949, 1997.
41. United States Army Corps of Engineers, Willamette Valley Projects Configuration/Operation Plan (COP) [Phase II Report]. 2015.