簡易檢索 / 詳目顯示

研究生: 廖顯慶
Liao, Shian-Ching
論文名稱: 利用倒階設計方法於球與板系統的追蹤平衡控制
Tracking and Balance Control of Ball and Plate Systems via Backstepping Design
指導教授: 何明字
Ho, Ming-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 166
中文關鍵詞: 球與板系統
外文關鍵詞: Balance Control of Ball and Plate Systems
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,製作了一套以數位訊號處理器(Digital Signal Processor, DSP)為基礎之球與板系統。整體系統架構包含了機械結構、馬達致動器、感測器、控制器部份,以及配合自行設計之週邊介面電路與軟體結合而完成。球與板系統是一個高度非線性系統,由於系統存在離心力項,所以相對階數(relative degree)沒有被適當的定義。然而此項提供強烈的正回授量,易使系統產生跳動而呈現不穩定狀態,造成系統控制上的困難。在本論文中,將介紹如何建立系統之數學模型與架設機械結構,並使用倒階(backstepping)控制方法設計控制器,其為利用遞迴程序重複選用Lyapunov function來判定穩定性的一種回授控制方法,能在限制的條件下解決穩定性(stabilization)、追蹤(tracking)以及強健性(robustness)的問題。其所設計出的倒階控制器,可減少離心力項對系統的影響,並可使系統達到全域漸進穩定(global asymptotic stability) 。

    In this thesis, a digital signal processor based (DSP-based) ball and plate control system is built. This system consists of a mechanism, two motor actuators, a touch panel sensor , a DSP-based control card and the relevant peripheral interface circuits. The ball and plate system is a highly nonlinear system. Due to existence of the centrifugal force, the system relative degree id not well defined. Moreover , the centrifugal force provides a strong positive feedback and easily leads to the peaking phenomenon . In this thesis , it is shown how to build a ball and plate system . Then the mathematical model of this system is derived. The backstepping control design approach is used to design the controller for the ball and plate system . It is a recursive procedure that interlaces the choice of a Lyapunov function to discriminate stability with design of feedback control , and backstepping control often solves stabilization , tracking and robust control , problems under restrictive conditions . In this thesis , the backstepping controller can reduce the effect of centrifugal force on the system , and make the system reach globally asymptotic stability .

    中文摘要……………………………………………………………………………I 英文摘要……………………………………………………………………………II 誌謝…………………………………………………………………………………III 目錄…………………………………………………………………………………IV 圖表目錄…………………………………………………………………………VII 第一章 緒論………………………………………………………………1-1 1-1 研究背景……………………………………………………………1-1 1-2 研究動機……………………………………………………………1-1 1-3 研究目的……………………………………………………………1-1 1-4 研究方法與步驟…………………………………………………1-2 1-5 相關文獻回顧………………………………………………………1-4 1-6 實驗室相關成果…………………………………………………1-5 1-7 本文結構………………………………………………………………1-5 第二章 永磁式直流馬達和球與板系統數學模型…………………………2-1 2-1 前言………………………………………………………………………2-1 2-2 永磁式直流馬達數學模型之建立………………………………2-1 2-3 永磁式直流馬達參數識別………………………………………2-4 2-4 球與板系統數學模型之建立………………………………………2-13 第三章 球與板系統控制器設計及演算法之實現………………………3-1 3-1 前言…………………………………………………………………3-1 3-2 球與板系統之LQR平衡控制器設計……………………………3-1 3-3 球與板系統之倒階控制器設計……………………………………3-7 3-3-1 倒階控制之概要…………………………………………………3-7 3-3-2 倒階控制器設計步驟………………………………………3-8 3-3-3 設計球與板系統的倒階控制器……………………………3-15 第四章 球與板系統模擬結果……………………………………………4-1 4-1 前言…………………………………………………………………4-1 4-2 球與板系統之LQR平衡控制器模擬結果………………………4-1 4-3 球與板系統之倒階控制器模擬結果………………………………4-6 第五章 球與板系統機構與感測器製作…………………………………5-1 5-1 前言…………………………………………………………………5-1 5-2 球與板系統機構設計與製作……………………………………5-2 5-3 觸控面板感測器與馬達角度位置之應用與製作………………5-7 第六章 硬體電路及軟體程式介紹………………………………………6-1 6-1 前言…………………………………………………………………6-1 6-2 硬體電路介紹………………………………………………….……6-1 6-2-1 TMS320F2812核心簡介………………………………………6-1 6-2-1-1 QEP模組介面簡述…………………………………………6-2 6-2-1-2 ADC模組介面簡述………………………………………6-3 6-2-1-3 SPI模組介面簡述………………………………………6-7 6-2-1-4 SCI模組介面簡述………………………………………6-10 6-2-1-5 PWM模組介面簡述………………………………………6-13 6-2-2 週邊硬體電路簡介……………………………………………6-17 6-2-1-6 解碼電路設計…………………………………………6-17 6-2-1-7 數位/類比驅動電路…………………………………6-21 6-2-1-8 PWM驅動電路…………………………………………6-25 6-2-1-9 面板驅動介面電路………………………………………6-27 6-3 軟體環境介紹…………………………………………………………6-29 第七章 實驗結果………………………………………………………………7-1 7-1 前言………………………………………………………………………7-1 7-2 微分器之實現…………………………………………………………7-2 7-3 球與板系統之LQR控制器與倒階控制器實驗結果……………7-3 第八章 結論與未來展望………………………………………………………8-1 8-1 結論………………………………………………………………………8-1 8-2 未來展望………………………………………………………………..8-1 參考文獻 附錄A 座標旋轉軸定理 附錄B 球與板系統之連桿旋轉力矩與馬達齒輪組旋轉力矩關係式 附錄C Lyapunov 穩定性與收斂 自述

    [1] J. Hauser, S. Sastry and P. V. Kokotovic, “Nonlinear Control via Approximation Input-Output Linearization: The Ball and Beam Example,” IEEE Trans. on Automatic Control, Vol. 37, No. 3, pp. 392-398, 1992.
    [2] P. V. Kokotovic, “The Joy of Feedback: Nonlinear and Adaptive,” IEEE Control Systems Magazine, Vol. 12, No. 3, pp. 7-17, 1992.
    [3] C. Barbu, R. Sepulche, W. Lin and P. V. Kokotovic, “Global Asymptotic Stabilization of the Ball-and-Beam Syatem,” Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 3, pp. 2351-2355, 1997.
    [4] A. Isidori, Nonlinear Control Systems, 3rd ed., Communication and Control Engineering Series, New York, Springer-Verlag, 1995.
    [5] A. Isidori and C. I. Byrnes, “Output Regulation of Nonlinear Systems,” IEEE Trans. on Automatic Control, Vol. 35, No. 2, pp. 131-140, 1990.
    [6] E. C. Gwo and J. Hauser, “A Numerical Approach for Approximate Feedback Linearization,” Proceedings of the American Control Conference, pp. 1495-1499, 1993.
    [7] M. C. Lai, C. C. Chien, C. Y. Cheng, Z. Xu and Y. Zhang, “Nonlinear Tracking Control via Approximate Backstepping,” Proceedings of the American Control Conference, pp. 1339-1343, 1994.
    [8] 王興森,「倒階控制在球桿系統的應用」,國立成功大學工程科學研究所碩士論文,民國九十一年七月。
    [9] 呂俊明,「球與輪系統之平衡控制」,國立成功大學工程科學研究所碩士論文,民國九十二年七月。
    [10] 黃聖財,「以數位信號處理器為基礎之球與桿系統平衡控制」,國立成功大學工程科學研究所碩士論文,民國九十三年七月。
    [11] 辛俊光,「永磁式直流有刷馬達之參數自動鑑別系統」,國立成功大學航空太空工程研究所碩士論文,民國八十六年六月。
    [12] S. R. Hebertt, “On the Control of the Ball and Beam System: A Trajectory Planning Approach,” Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 4, pp. 4042-4047, 2000.
    [13] P. T. Yip, “Symbol-Based Control of a Ball-on-Plate Mechanical System,” Master's Thesis of University of Maryland, 2004.
    [14] X. Fan, N. Zhang and S. Teng, “Trajectory Planning and Tracking of Ball and Plate System Using Hierarchical Fuzzy Control Scheme,” Fuzzy Sets and Systems, Vol. 144, No. 2, pp. 297-312, 2004.
    [15] K. Ogata, Modern Control Engineering, Prentice Hall, Upper Saddle River, NJ, 2002.
    [16] 詹富強,「以數位信號處理器為基礎單板獨立旋轉型倒單擺甩上與平衡控制系統之實現」,國立成功大學工程科學研究所碩士論文,民國九十三年七月。
    [17] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice-Hall, Upper Saddle River, N J , 2002.
    [18] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, “Nonlinear and Adaptive Control Design,” Wiley-Interscience, New York, 1995.
    [19] 陳慶全,「適應性Backstepping控制」,國立臺灣科技大學機械工程研究所碩士論文,民國八十九年八月。
    [20] J. Zhao and I. Kanellakoulos, “Flexible Backstepping Design for Tracking and Disturbance Attenuation,” Int. J. Robust Nonlinear Control, pp. 331-348, 1998.
    [21] S. Awtar, K. C. Craig, “Mechatronic Design of a Ball on Plate Balancing System”, Proceedings of the 7th Mechatronics Forum International Conference, 2000.
    [22] TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2810, TMS320C2811, TMS320C2812, Digital Signal Processors Data Manual (SPRS174L), Texas Instruments, 2004.
    [23] 龔應時、陳建武、徐永松,「TMS320F/C24x DSP 控制器原理與應用」,滄海,民國九十二年。
    [24] 董勝源,「DSP TMS320LF2407與C語言控制實習」,長高,民國九十三年。
    [25] TMS320F28x Analog-to-Digital Converter (ADC) Peripheral Reference Guide (SPRU060), Texas Instruments, 2002.
    [26] TMS320x281x, 280x DSP Serial Peripheral Interface Reference Guide (SPRU059B), Texas Instruments, 2004.
    [27] TMS320x281x, 280x DSP Serial Communication Interface Reference Guide (SPRU051B), Texas Instruments, 2004.
    [28] TMS320x281x DSP Event Manager (EV) Reference Guide (SPRU065C), Texas Instruments, 2004.
    [29] TMS320x281x DSP System Control and Interrupts Reference Guide (SPRU078C), Texas Instruments, 2005.

    下載圖示 校內:2007-08-29公開
    校外:2010-08-29公開
    QR CODE