| 研究生: |
莊翔文 Zhuang, Xiang-Wen |
|---|---|
| 論文名稱: |
具各種熱阻之斜頂空腔的三維自然對流熱傳特性研究 Study on the Heat Transfer Characteristics of 3D Natural Convection in Inclined Roof Cavity with Various Heat Resistance |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 計算流體力學 、逆算法 、自然對流 、建築散熱 |
| 外文關鍵詞: | computational fluid dynamics, inverse algorithm, natural convection, building heat dissipation |
| 相關次數: | 點閱:95 下載:51 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中以不鏽鋼架設簡化的封閉式倉儲模型,由經過校正的熱電偶量測特定部件上的溫度,使用量測到的溫度作為輔助,搭配CFD軟體ANSYS Fluent,在選擇合適的網格後,以逆向方法中的最小平方法求得未知熱源的熱功率以及適合的流動模型。之後利用CFD軟體中的後處理功能呼叫模型中的溫度分布圖、速度分布圖及流線圖,配合實驗數據分析倉庫在不同的貨架配置或是夾層、外掛隔熱空腔等阻熱措施的情況下,模型內的熱傳特性與流體的流動狀態。
比對了實驗數據以及模擬軟體中得到的圖表等結果,可以發現研究 根誤差僅0.65 %,但計算所需的時間也最久。在放置貨架時應使貨架遠離壁面,以免受到壁面流的吹襲以及壁面高溫的影響,除此之外貨架的擺放位置對上部空氣及熱傳係數的影響較小。使用隔板在屋頂作成夾層時,可以減少熱傳係數19 ~ 70 %,但對流體流速的影響要將夾層增加到兩層時才會顯現出來。增加隔熱空腔可以降低31 %的熱傳量,同時也會減低32 ~ 52 %的熱傳係數,但對整體的流場型態並沒有太大的影響。
In this paper, a closed warehouse model is simplified with a stainless steel frame, and a calibrated thermocouple is used to measure the temperature of specific components. Then, the CFD simulation software post-processing function was used to call the temperature distribution, velocity distribution, and flow line diagrams of the model to analyze the heat transfer characteristics and the flow state of the fluid in the model under different shelf configurations or thermal barriers such as interlayer and external insulation cavity.
After comparing the experimental data with the graphs obtained from the simulation software, it is found that the RNG k-ε model is the closest to the experimental results, with a root mean square error of 0.65%, but it also takes the longest time to calculate. The racks should be placed far away from the wall to avoid the impact of wall flow and high temperature of the wall, except that the placement of the shelves has less impact on the upper air and heat convection coefficient. The heat convection coefficient can be significantly reduced by 70% when using partitions on the roof as mezzanines, but the effect on the flow rate of the fluid will only become apparent when the number of interlayers is increased to two. Adding insulation cavities can significantly reduce the amount of incoming heat transfer by 31%, and also reduce the heat convection coefficient by 52%, but it does not have much effect on the overall flow field pattern.
[1] 台灣電力公司企劃處, 109年電業年報. 2021.
[2] 中華民國交通部統計處, 109年旅運及倉儲業產值調查報告. 2021.
[3] 財團法人台灣綠色生產力基金會, 2020非生產性質行業能源查核年報. 2020.
[4] D. Das, M. Roy, and T. Basak, Studies on natural convection within enclosures of various (non-square) shapes – A review, International Journal of Heat and Mass Transfer. 106 (2017) 356-406.
[5] I.V. Miroshnichenko, M.A. Sheremet, and A.A. Mohamad, Numerical simulation of a conjugate turbulent natural convection combined with surface thermal radiation in an enclosure with a heat source, International Journal of Thermal Sciences. 109 (2016) 172-181.
[6] T. Fusegi, J.M. Hyun, K. Kuwahara, and B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, International Journal of Heat and Mass Transfer. 34 (6) (1991) 1543-1557.
[7] A. Raji, M. Hasnaoui, M. Firdaouss, and C. Ouardi, Natural Convection Heat Transfer Enhancement in a Square Cavity Periodically Cooled from Above, Numerical Heat Transfer, Part A: Applications. 63 (7) (2013) 511-533.
[8] T. Basak, S. Roy, S. Krishna Babu, and A.R. Balakrishnan, Finite element analysis of natural convection flow in a isosceles triangular enclosure due to uniform and non-uniform heating at the side walls, International Journal of Heat and Mass Transfer. 51 (17-18) (2008) 4496-4505.
[9] ×. Yıldız, A.E. Yıldız, M. Arıcı, N.A. Azmi, and A. Shahsavar, Influence of dome shape on flow structure, natural convection and entropy generation in enclosures at different inclinations: A comparative study, International Journal of Mechanical Sciences. 197 (2021).
[10] R. Nikbakhti and A.B. Rahimi, Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls, Journal of the Taiwan Institute of Chemical Engineers. 43 (4) (2012) 535-541.
[11] M. Arıcı, ×. Yıldız, S. Nižetić, A. Shahsavar, and A. Campo, Implications of boundary conditions on natural convective heat transfer of molten phase change material inside enclosures, International Journal of Energy Research. 45 (5) (2020) 7631-7650.
[12] N.S. Bondareva and M.A. Sheremet, 3D natural convection melting in a cubical cavity with a heat source, International Journal of Thermal Sciences. 115 (2017) 43-53.
[13] D.K. Singh and S.N. Singh, Conjugate free convection with surface radiation in open top cavity, International Journal of Heat and Mass Transfer. 89 (2015) 444-453.
[14] S.N. Singh and S.P. Venkateshan, Numerical study of natural convection with surface radiation in side-vented open cavities, International Journal of Thermal Sciences. 43 (9) (2004) 865-876.
[15] H. Turkoglu and N. Yücel, Natural convection heat transfer in enclosures with conducting multiple partitions and side walls, Heat and Mass Transfer. 32 (1) (1996) 1-8.
[16] V. Sambou, B. Lartigue, F. Monchoux, and M. Adj, Theoretical and experimental study of heat transfer through a vertical partitioned enclosure: Application to the optimization of the thermal resistance, Applied Thermal Engineering. 28 (5-6) (2008) 488-498.
[17] G. Yesiloz and O. Aydin, Laminar natural convection in right-angled triangular enclosures heated and cooled on adjacent walls, International Journal of Heat and Mass Transfer. 60 (2013) 365-374.
[18] A.K. Sharma, K. Velusamy, and C. Balaji, Interaction of turbulent natural convection and surface thermal radiation in inclined square enclosures, Heat and Mass Transfer. 44 (10) (2007) 1153-1170.
[19] 吳文忠, 近臨界瑞里數Ra下之自然對流模擬計算, 國立成功大學 航空太空工程學系碩博士班. 2007.
[20] Q. Chen and J. Van Der Kooi, A methodology for indoor airflow computations and energy analysis for a displacement ventilation system, Energy and Buildings. 14 (4) (1990) 259-271.
[21] A.Q. Ahmed, S. Gao, and A.K. Kareem, Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms, Applied Thermal Engineering. 110 (2017) 821-834.
[22] L.L. Wang, X. Zhang, and D. Qi, Indoor thermal stratification and its statistical distribution, Indoor Air. 29 (2) (2019) 347-363.
[23] G. Ziskind, V. Dubovsky, and R. Letan, Ventilation by natural convection of a one-story building, Energy and Buildings. 34 (1) (2002) 91-101.
[24] S.G. Martyushev and M.A. Sheremet, Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source, International Journal of Heat and Mass Transfer. 73 (2014) 340-353.
[25] D.M. Kim and R. Viskanta, EFFECT OF WALL CONDUCTION AND RADIATION ON NATURAL CONVECTION IN A RECTANGULAR CAVITY, Numerical Heat Transfer. 7 (4) (1984) 449-470.
[26] M. Leporini, F. Corvaro, B. Marchetti, F. Polonara, and M. Benucci, Experimental and numerical investigation of natural convection in tilted square cavity filled with air, Experimental Thermal and Fluid Science. 99 (2018) 572-583.
[27] M. Seifhashemi, B.R. Capra, W. Milller, and J. Bell, The potential for cool roofs to improve the energy efficiency of single storey warehouse-type retail buildings in Australia: A simulation case study, Energy and Buildings. 158 (2018) 1393-1403.
[28] S.H. Ho, L. Rosario, and M.M. Rahman, Numerical simulation of temperature and velocity in a refrigerated warehouse, International Journal of Refrigeration. 33 (5) (2010) 1015-1025.
[29] Y. Wang, X. Meng, X. Yang, and J. Liu, Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation, Energy and Buildings. 75 (2014) 394-401.
[30] L.L. Wang and W. Li, A study of thermal destratification for large warehouse energy savings, Energy and Buildings. 153 (2017) 126-135.
[31] M.A. Antar and H. Baig, Conjugate conduction-natural convection heat transfer in a hollow building block, Applied Thermal Engineering. 29 (17-18) (2009) 3716-3720.
[32] M.A. Antar, Thermal radiation role in conjugate heat transfer across a multiple-cavity building block, Energy. 35 (8) (2010) 3508-3516.
[33] M.M. Al-Hazmy, Analysis of coupled natural convection–conduction effects on the heat transport through hollow building blocks, Energy and Buildings. 38 (5) (2006) 515-521.
[34] J.K. Nayak, A. Srivastava, U. Singh, and M.S. Sodha, The relative performance of different approaches to the passive cooling of roofs, Building and Environment. 17 (2) (1982) 145-161.
[35] N. Zhou, W. Gao, M. Nishida, H. Kitayama, and T. Ojima, Field study on the thermal environment of passive cooling system in RC building, Energy and Buildings. 36 (12) (2004) 1265-1272.
[36] Z.X. Li, A.a.a.A. Al-Rashed, M. Rostamzadeh, R. Kalbasi, A. Shahsavar, and M. Afrand, Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM, Energy Conversion and Management. 195 (2019) 43-56.
[37] Y. Hamidi, Z. Aketouane, M. Malha, D. Bruneau, A. Bah, and R. Goiffon, Integrating PCM into hollow brick walls: Toward energy conservation in Mediterranean regions, Energy and Buildings. 248 (2021).
[38] N. Hichem, S. Noureddine, S. Nadia, and D. Djamila, Experimental and Numerical Study of a Usual Brick Filled with PCM to Improve the Thermal Inertia of Buildings, Energy Procedia. 36 (2013) 766-775.
[39] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering. 3 (2) (1974) 269-289.
[40] S.A. Orszag, V. Yakhot, W.S. Flannery, and F. Boysan. Renormalization group modeling and turbulence simulations. in International conference, Near-wall turbulent flows. 1993. Tempe; AZ: Elsevier;.
[41] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal. 32 (8) (1994) 1598-1605.
[42] H.T. Chen, S.C. Chang, M.H. Hsu, and C.H. You, Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC, International Journal of Heat and Mass Transfer. 181 (2021).
[43] 蘇威諺, 三維CFD逆向方法於矩形空腔內之自然對流的熱傳研究, 國立成功大學 機械工程學系. 2021.
[44] 余宗樺, 具有各種隔板之封閉倉儲的三維自然對流熱傳特性研究, 國立成功大學 機械工程學系. 2021.
[45] 許名勛, 四管於封閉空腔內之三維自然對流的熱傳特性研究, 國立成功大學 機械工程學系. 2021.
[46] A.J. Ghajar and D. Yunus A. Cengel, Heat and Mass Transfer: Fundamentals and Applications. 2014: McGraw-Hill Education.
[47] V.S. Arpaci, S.H. Kao, and A. Selamet, Introduction to Heat Transfer. 1999: Prentice Hall.
[48] Coolermaster. Ice fusion V2. Available from: https://www.coolermaster.com/tw/zh-tw/catalog/coolers/thermal-grease/ice-fusion-v2/.
[49] Arctic-Cooling. Thermal pad TP-2. Available from: https://www.arctic.de/en/TP-2-APT2560/ACTPD00005A.
[50] F.P. Incropera, T.L. Bergman, and A.S. Lavine, Foundations of Heat Transfer. 2013: Wiley.
[51] Ansyschina. 一篇文章看完Fluent的起源和发展史诗. 2020; Available from: https://zhuanlan.zhihu.com/p/150222309.
[52] Crunchbase. ANSYS Fluent acquired by ANSYS. 2006; Available from: https://www.crunchbase.com/acquisition/ansys-acquires-ansys-fluent--fd0c7342.
[53] J.H. Ferziger, M. Perić, and R.L. Street, Computational methods for fluid dynamics. Vol. 3. 2002: Springer.