簡易檢索 / 詳目顯示

研究生: 高瑋廷
Kao, Wei-Ting
論文名稱: 實驗上使用糾纏目擊可觀測量檢定純四光子量子操控性
Experimental Verification of Genuine Four-Photon Quantum Steering Using Entanglement Witness Observables
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 140
中文關鍵詞: 量子網路古典節點多體之愛因斯坦-波多爾斯基-羅森操控性格林伯格-霍恩-蔡林格狀態多體量子操控性四光子糾纏自發參數下轉換
外文關鍵詞: quantum networks, classical node, genuine multipartite Einstein-Podolsky-Rosen steering, Greenberger–Horne–Zeilinger state, multipartite quantum steering, four-photon entanglement, spontaneous parametric down-conversion
相關次數: 點閱:45下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在量子網絡中,相互連接的節點構成分散式量子資訊處理的主幹,當多網路節點糾纏形成圖態時,幾乎所有現有的分散式量子任務都離不開這樣的量子平台;當前糾纏目擊(entanglement witness)已被廣泛使用於檢測製造的量子網路,確認其是否為真正的(純)多體糾纏(genuine multipartite entanglement)。但現實網絡可能受到技術限制和噪音的影響,使得節點在最壞的情況下從量子節點衰變為可用古典物理描述的古典節點; 此時,由於糾纏目擊的分析並無考量量子系統中出現古典節點的情況,這使得糾纏目擊在驗證分散式量子任務的真正的多體糾纏時不可靠。
    針對上述的問題,我們首先在理論上證明當目標狀態為格林伯格-霍恩-蔡林格狀態(GHZ states)時,真正的多體之量子操控性(genuine multipartite quantum steering)可使用原本設計於偵測糾纏目擊的可觀測量來識別; 因此,當一個未知的網路被識別具有此特性時,可以完全屏除古典節點的存在。我們進一步完成在實驗上之驗證,透過使用自發參數下轉換(spontaneous parametric down-conversion)製造出兩對偏振糾纏光子對,將兩對偏振糾纏光子對的各一個光子在極化光束分光器(polarizing beam splitter)上干涉; 使的兩對糾纏光子對糾纏形成接近格林伯格-霍恩-蔡林格狀態的四光子糾纏,並且透過理論的分析結果識別其具有真正的多體之量子操控性。本研究表明在產生的目標狀態為格林伯格-霍恩-蔡林格狀態時,使用糾纏目擊的可觀測量所獲得的狀態保真度,其可以同時偵測真正的多體糾纏以及識別真正的多體之量子操控性,並且在實驗上實現真正的四光子之量子操控性。我們提供了以格林伯格-霍恩-蔡林格狀態作為目標狀態來進行量子資訊任務前,在網路中所有節點皆不可被古典物理描述的前提下,偵測真正的多體糾纏之新標準,以及實現符合該標準且接近四光子格林伯格-霍恩-蔡林格狀態的狀態。

    In quantum networks, connected nodes of a quantum system are used as the backbone to accomplish distributed quantum information processing. Almost all existing distributed quantum tasks cannot be separated from such a quantum platform when each network node is entangled in the graph state; currently, entanglement witness (EW) is widely used to detect whether the generated quantum networks is genuine multipartite entanglement. However, real networks may be suffering from technical limitations and noise, making the nodes decay from quantum nodes to classical nodes described by classical physics in the worst case; at this point, since the analysis of EW does not takes into account the presence of classical nodes in the created networks, EW is no longer dependable in verifying genuine multipartite entanglement. To address the above problem, we first prove in theory that when the target state is the Greenberg-Horn-Zeilinger states (GHZ states), the genuine multipartite quantum steering can be identified using the observables designed originally to detect EW; hence, when an unknown network is identified to have this property, the existence of classical nodes can be completely excluded. To further complete the experimental certification, we use the spontaneous parametric down-conversion to generate two pairs of polarization-entangled photon pairs, and one photon of the two pairs of polarization-entangled photon pairs are interfered on the polarizing beam splitter; then leading to the fusion of two entangled photon pairs into four-photon entanglement close to the GHZ states, which is identified by the results of the theoretical analysis as having genuine multipartite quantum steering. This study demonstrates that the state fidelity obtained by using the observables to detect EW can simultaneously detect genuine multipartite entanglement and identify genuine multipartite quantum steering when the generated target state is the GHZ states; furthermore, we experimentally implement the genuine four-photon quantum steering. Before taking the GHZ states as the target state for quantum information tasks, we provide the new criteria to detect genuine multipartite entanglement under the condition that all nodes in the networks are indescribable by classical physics and implement a state close to the four-photon GHZ state that also satisfies the new criteria.

    摘要 i Abstract iii 誌謝 v Table of Contents vi List of Tables x List of Figures xii Nomenclature xiv Chapter 1. Introduction 1 1.1. Background 2 1.2. Motivation 4 1.3. Purpose 5 1.4. Outline 7 Chapter 2. Tools and essential knowledge for the framework of this research 10 2.1. Density operator 10 2.2. Entanglement witness 13 2.3. Identification of genuine multipartite Einstein- Podolsky-Rosen steering 14 2.3.1. EPR steering 15 2.3.2. Graph states and genuine multipartite EPR steering 17 2.4. Quantum state tomography 19 Chapter 3. Expressing the state fidelity function of the GHZ state by the Pauli matrices 21 3.1. State fidelity 21 3.2. Decomposition of the GHZ states in terms of the Pauli matrices 22 3.3. Number of measurement settings 26 Chapter 4. Identifying genuine multipartite quantum steering using entanglement witness observables 28 4.1. Decomposition of the GHZ states in terms of entanglement witness observables 29 4.2. State fidelity function 33 4.3. Classical nodes 34 4.4. Fidelity criteria for identifying genuine multipartite quantum steering 38 4.4.1. Analyzing classical nodes in the state for obtaining fidelity criteria 39 4.4.2. Fidelity criteria for the N-node GHZ state with odd nodes 51 4.4.3. Fidelity criteria for the N-node GHZ state with even nodes 58 4.4.4. Fidelity criteria of the N-node GHZ state 69 4.5. Identifying genuine multipartite quantum steering by fidelity criteria 70 Chapter 5. Comparing the GHZ states in terms of the Pauli matrices and entanglement witness observables 72 5.1. Number of measurement settings 72 5.2. Fidelity criteria 73 5.3. Noise tolerance of steering witness 77 5.4. Difference in analysis process 79 Chapter 6. Identifying genuine multipartite quantum steering for the other states 81 6.1. Maximum state fidelity of the W states, cluster states and states in decoherence-free subspaces 81 6.2. Identifying genuine multipartite quantum steering 83 Chapter 7. Generation of the state close to the four-photon GHZ state with genuine multipartite quantum steering 85 7.1. Generation of the state close to the four-photon GHZ state 86 7.1.1. Generation of polarization-entangled photon pairs 87 7.1.2. Entanglement of four Photons in graph states 90 7.2. Experimental generation of the four-photon entanglement 93 7.2.1. Details of experimental generation for entangled photon pairs 94 7.2.2. Details of experimental generation for the state close to the four-photon GHZ state 97 7.2.3. Experimental Hong-Ou-Mandel interference 100 7.3. Details of experimental setup 101 7.4. Experimental results 104 7.4.1. Experimental measurement settings and generation of the state close to the three-photon GHZ state 104 7.4.2. State fidelity of the four-photon entanglement 110 7.4.3. Four-photon entangment with genuine multipartite quantum steering 115 7.4.4. Creation rate of the three-photon and four-photon entanglement 116 7.5. Effect of narrow-band filter on the quality of the four-photon entanglement 117 7.5.1. State fidelity and creation rate with old narrow-band filters 118 7.5.2. Comparing the specifications of two narrow-band filters 123 Chapter 8. Summary and outlook 127 8.1. Summary 127 8.2. Outlook 129 References 132 Appendix A. Detailed data on the quality of entangled photon pairs 139

    [1] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger,“Bell's theorem without inequalities,”American Journal of Physics, vol.58, no.12, pp.1131–1143, 1990.
    [2] V. Scarani, A. Acín, E. Schenck, and M. Aspelmeyer,“Nonlocality of cluster states of qubits,”Physical Review A, vol.71, no.4, p.042325, 2005.
    [3] O. Gühne, G. Tóth, P. Hyllus, and H. J. Briegel,“Bell inequalities for graph states,”Physical review letters, vol.95, no.12, p.120405, 2005.
    [4] O. Gühne, C.-Y. Lu, W.-B. Gao, and J.-W. Pan,“Toolbox for entanglement detection and fidelity estimation,”Physical Review A, vol.76, no.3, p.030305, 2007.
    [5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,“Quantum entangle- ment,”Rev. Mod. Phys., vol.81, pp.865–942, Jun 2009.
    [6] O. Gühne and G. Tóth,“Entanglement detection,”Physics Reports, vol.474, no.1-6, pp.1–75, 2009.
    [7] W. McCutcheon, A. Pappa, B. A. Bell, A. Mcmillan, A. Chailloux, T. Lawson, M. Mafu, D. Markham, E. Diamanti, I. Kerenidis, et al.,“Experimental verification of multipartite entanglement in quantum networks,”Nature communications, vol.7, no.1, pp.1–8, 2016.
    [8] H. M. Wiseman, S. J. Jones, and A. C. Doherty,“Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox,”Physical review letters, vol.98, no.14, p.140402, 2007.
    [9] S. J. Jones, H. M. Wiseman, and A. C. Doherty,“Entanglement, einstein-podolsky- rosen correlations, bell nonlocality, and steering,”Physical Review A, vol.76, no.5, p.052116, 2007.
    [10] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan,“Genuine high-order einstein-podolsky-rosen steering,”Physical review letters, vol.115, no.1, p.010402, 2015.
    [11] Q. He and M. Reid,“Genuine multipartite einstein-podolsky-rosen steering,”Physical Review Letters, vol.111, no.25, p.250403, 2013.
    [12] H. Lu, C.-Y. Huang, Z.-D. Li, X.-F. Yin, R. Zhang, T.-L. Liao, Y.-A. Chen, C.-M. Li, and J.-W. Pan,“Counting classical nodes in quantum networks,”Physical review letters, vol.124, no.18, p.180503, 2020.
    [13] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe,“An elementary quantum network of single atoms in optical cavities,”Nature, vol.484, no.7393, pp.195–200, 2012.

    [14] H. J. Kimble,“The quantum internet,”Nature, vol.453, no.7198, pp.1023–1030, 2008.
    [15] S. Wehner, D. Elkouss, and R. Hanson,“Science 362, eaam9288 (2018),”URL http://science. sciencemag. org/content/362/6412/eaam9288.
    [16] R. Raussendorf and H. J. Briegel,“A one-way quantum computer,”Physical review letters, vol.86, no.22, p.5188, 2001.
    [17] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As- pelmeyer, and A. Zeilinger,“Experimental one-way quantum computing,”Nature, vol.434, no.7030, pp.169–176, 2005.
    [18] A. Broadbent, J. Fitzsimons, and E. Kashefi,“Proceedings of the 50th annual ieee symposium on foundations of computer science,”pp.517–526, 2009.
    [19] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther,“Demonstration of blind quantum computing,”science, vol.335, no.6066, pp.303–308, 2012.
    [20] C. M. Dawson, H. L. Haselgrove, and M. A. Nielsen,“Noise thresholds for optical quantum computers,”Physical review letters, vol.96, no.2, p.020501, 2006.
    [21] H.-K. Lo, M. Curty, and K. Tamaki,“Secure quantum key distribution,”Nature Photonics, vol.8, no.8, pp.595–604, 2014.
    [22] M. Epping and H. Kampermann,“C. macchiavello, and d. bruß,”New Journal of Physics, vol.19, no.9, p.093012, 2017.
    [23] W. Dür and H.-J. Briegel,“Stability of macroscopic entanglement under decoherence,”Physical review letters, vol.92, no.18, p.180403, 2004.
    [24] M. Hein, J. Eisert, and H. J. Briegel,“Multiparty entanglement in graph states,”Physical Review A, vol.69, no.6, p.062311, 2004.
    [25] H. J. Briegel and R. Raussendorf,“Persistent entanglement in arrays of interacting particles,”Physical Review Letters, vol.86, no.5, p.910, 2001.
    [26] D. Schlingemann and R. F. Werner,“Quantum error-correcting codes associated with graphs,”Physical Review A, vol.65, no.1, p.012308, 2001.
    [27] K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan,“Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,”Physical review letters, vol.99, no.12, p.120503, 2007.
    [28] H. Häffner, W. Hänsel, C. Roos, J. Benhelm, D. Chek-al Kar, M. Chwalla, T. Körber, U. Rapol, M. Riebe, P. Schmidt, et al.,“Scalable multiparticle entanglement of trapped ions,”Nature, vol.438, no.7068, pp.643–646, 2005.
    [29] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and A. Sanpera,“Experimental detection of multipartite entanglement using witness operators,”Physical review letters, vol.92, no.8, p.087902, 2004.

    [30] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan,“Experimental entanglement of six photons in graph states,”Nature physics, vol.3, no.2, pp.91–95, 2007.
    [31] O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, and A. Sanpera,“Detection of entanglement with few local measurements,”Phys. Rev.A, vol.66, p.062305, Dec 2002.
    [32] O. Gühne and P. Hyllus,“Investigating three qubit entanglement with local measurements,”International Journal of Theoretical Physics, vol.42, no.5, pp.1001–1013, 2003.
    [33] G. Tóth and O. Gühne,“Detecting genuine multipartite entanglement with two local measurements,”Phys. Rev.Lett., vol.94, p.060501, Feb 2005.
    [34] G. Tóth and O. Gühne,“Entanglement detection in the stabilizer formalism,”Phys. Rev.A, vol.72, p.022340, Aug 2005.
    [35] Y. Tokunaga, T. Yamamoto, M. Koashi, and N. Imoto,“Fidelity estimation and entanglement verification for experimentally produced four-qubit cluster states,”Physical Review A, vol.74, no.2, p.020301, 2006.
    [36] L. Chen and Y.-X. Chen,“Multiqubit entanglement witness,”Physical Review A, vol.76, no.2, p.022330, 2007.
    [37] O. Gühne, Detecting quantum entanglement: entanglement witnesses and uncertainty relations. PhD thesis, Hannover: Universität, 2004.
    [38] G. Tóth,“Detection of multipartite entanglement in the vicinity of symmetric dicke states,”JOSA B, vol.24, no.2, pp.275–282, 2007.
    [39] G. Tóth and O. Gühne,“Detecting genuine multipartite entanglement with two local measurements,”Physical Review Letters, vol.94, no.6, p.060501, 2005.
    [40] A. Pirker, J. Wallnöfer, and W. Dür,“Modular architectures for quantum networks,”New Journal of Physics, vol.20, no.5, p.053054, 2018.
    [41] T. Northup and R. Blatt,“Quantum information transfer using photons,”Nature pho- tonics, vol.8, no.5, pp.356–363, 2014.
    [42] C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.-M. Duan, and J. Kim,“Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,”Physical Review A, vol.89, no.2, p.022317, 2014.
    [43] A. Reiserer and G. Rempe,“Cavity-based quantum networks with single atoms and optical photons,”Reviews of Modern Physics, vol.87, no.4, p.1379, 2015.
    [44] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar,C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, et al.,“An integrated diamond nanophotonics platform for quantum-optical networks,”Science, vol.354, no.6314, pp.847–850, 2016.
    [45] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson,“Entanglement distillation between solid-state quantum network nodes,”Science, vol.356, no.6341, pp.928–932, 2017.
    [46] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. Devoret, L. Jiang, and R. Schoelkopf,“Deterministic teleportation of a quantum gate between two logical qubits,”Nature, vol.561, no.7723, pp.368–373, 2018.
    [47] B. Jing, X.-J. Wang, Y. Yu, P.-F. Sun, Y. Jiang, S.-J. Yang, W.-H. Jiang, X.-Y. Luo, J. Zhang, X. Jiang, et al.,“Entanglement of three quantum memories via interference of three single photons,”Nature Photonics, vol.13, no.3, pp.210–213, 2019.
    [48] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie, et al.,“Entanglement of two quantum memories via fibres over dozens of kilometres,”Nature, vol.578, no.7794, pp.240–245, 2020.
    [49] A. Pirker and W. Dür,“A quantum network stack and protocols for reliable entanglement-based networks,”New Journal of Physics, vol.21, no.3, p.033003, 2019.
    [50] A. Pappa, A. Chailloux, S. Wehner, E. Diamanti, and I. Kerenidis,“Multipartite entanglement verification resistant against dishonest parties,”Physical review letters, vol.108, no.26, p.260502, 2012.
    [51] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,“Quantum entangle- ment,”Reviews of Modern Physics, vol.81, no.2, p.865, 2009.
    [52] N. D. Mermin,“Hidden variables and the two theorems of john bell,”Reviews of Modern Physics, vol.65, no.3, p.803, 1993.
    [53] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,“Publisher's note: Bell nonlocality [rev. mod. phys. 86, 419 (2014)],”Reviews of Modern Physics, vol.86, no.2, p.839, 2014.
    [54] H. Kragh, Quantum generations: A history of physics in the twentieth century. Princeton University Press, 2002.
    [55] M. A. Nielsen and I. Chuang, Quantum computation and quantum information. American Association of Physics Teachers, 2002.
    [56] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,“Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,”Physical Review Letters, vol.70, no.13, p.1895, 1993.
    [57] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,“Experimental quantum teleportation,”Nature, vol.390, no.6660, pp.575–579, 1997.
    [58] A. Einstein, B. Podolsky, and N. Rosen,“Can quantum-mechanical description of physical reality be considered complete?,”Physical Review, vol.47, no.10, p.777, 1935.
    [59] J. L. O'brien, A. Furusawa, and J. Vučković,“Photonic quantum technologies,”Nature Photonics, vol.3, no.12, pp.687–695, 2009.
    [60] D. Deutsch,“Quantum theory, the church–turing principle and the universal quantum computer,”Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.400, no.1818, pp.97–117, 1985.
    [61] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid,“Experimental criteria for steering and the einstein-podolsky-rosen paradox,”Physical Review A, vol.80, no.3, p.032112, 2009.
    [62] M. Van den Nest, W. Dür, A. Miyake, and H. J. Briegel,“Fundamentals of universality in one-way quantum computation,”New Journal of Physics, vol.9, no.6, p.204, 2007.
    [63] V. Giovannetti, S. Lloyd, and L. Maccone,“Advances in quantum metrology,”Nature photonics, vol.5, no.4, pp.222–229, 2011.
    [64] X.-s. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther,“Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,”Nature Physics, vol.7, no.5, pp.399–405, 2011.
    [65] E. Schrödinger,“Discussion of probability relations between separated systems,”in Mathematical Proceedings of the Cambridge Philosophical Society, vol.31, pp.555–563, Cambridge University Press, 1935.
    [66] R. Uola, A. C. Costa, H. C. Nguyen, and O. Gühne,“Quantum steering,”Reviews of Modern Physics, vol.92, no.1, p.015001, 2020.
    [67] J. S. Bell,“On the einstein podolsky rosen paradox,”Physics Physique Fizika, vol.1, no.3, p.195, 1964.
    [68] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,“Proposed experiment to test local hidden-variable theories,”Physical Review Letters, vol.23, no.15, p.880, 1969.
    [69] D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White,“On the measurement of qubits,”in Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp.509–538, World Scientific, 2005.
    [70] R. F. Werner,“Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model,”Physical Review A, vol.40, no.8, p.4277, 1989.
    [71] C.-M. Li, K. Chen, A. Reingruber, Y.-N. Chen, and J.-W. Pan,“Verifying genuine high-order entanglement,”Physical review letters, vol.105, no.21, p.210504, 2010.
    [72] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger,“Experimental demonstration of four-photon entanglement and high-fidelity teleportation,”Physical Review Letters, vol.86, no.20, p.4435, 2001.
    [73] Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo,“Experimental generation of an eight-photon greenberger–horne–zeilinger state,”Nature communications, vol.2, no.1, pp.1–6, 2011.
    [74] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan,“Experimental violation of local realism by four-photon greenberger-horne-zeilinger entanglement,”Physical review letters, vol.91, no.18, p.180401, 2003.
    [75] A. M. Goebel, Manipulation of Multi-Photon-Entanglement: Applications in Quantum Information Processing. PhD thesis, 2008.
    [76] C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. Higgins, Z. Yan, C. Pugh, J.-P. Bourgoin, R. Prevedel, L. Shalm, et al.,“Experimental three-photon quantum nonlocality under strict locality conditions,”Nature photonics, vol.8, no.4, pp.292–296, 2014.
    [77] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih,“New high-intensity source of polarization-entangled photon pairs,”Physical Review Letters, vol.75, no.24, p.4337, 1995.
    [78] L. De Caro and A. Garuccio,“Reliability of bell-inequality measurements using polarization correlations in parametric-down-conversion photon sources,”Physical Review A, vol.50, no.4, p.R2803, 1994.
    [79] D. E. Browne and T. Rudolph,“Resource-efficient linear optical quantum computation,”Physical Review Letters, vol.95, no.1, p.010501, 2005.
    [80] T. Bodiya and L.-M. Duan,“Scalable generation of graph-state entanglement through realistic linear optics,”Physical review letters, vol.97, no.14, p.143601, 2006.
    [81] L. Marton, J. A. Simpson, and J. Suddeth,“Electron beam interferometer,”Physical Review, vol.90, no.3, p.490, 1953.
    [82] H. Rauch, W. Treimer, and U. Bonse,“Test of a single crystal neutron interferometer,”Physics Letters A, vol.47, no.5, pp.369–371, 1974.
    [83] O. Carnal and J. Mlynek,“Young's double-slit experiment with atoms: A simple atom interferometer,”Physical review letters, vol.66, no.21, p.2689, 1991.
    [84] D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard,“An interferometer for atoms,”Physical review letters, vol.66, no.21, p.2693, 1991.
    [85] Y.-A. Chen, S. Chen, Z.-S. Yuan, B. Zhao, C.-S. Chuu, J. Schmiedmayer, and J.-W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,”Nature Physics, vol.4, no.2, pp.103–107, 2008.
    [86] A. Zeilinger,“General properties of lossless beam splitters in interferometry,”American Journal of Physics, vol.49, no.9, pp.882–883, 1981.
    [87] A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski,“Three-particle entanglements from two entangled pairs,”Physical review letters, vol.78, no.16, p.3031, 1997.
    [88] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, et al.,“Creation of a six-atom`schrödinger cat'state,”Nature, vol.438, no.7068, pp.639–642, 2005.
    [89] D. Miller,“Pre-and post-selected ensembles and time-symmetry in quantum mechanics,”International Journal of Theoretical Physics, vol.48, no.4, pp.1030–1043, 2009.
    [90] Y.-B. Li, Q.-Y. Wen, Z.-C. Li, S.-J. Qin, and Y.-T. Yang,“Cheat sensitive quantum bit commitment via pre-and post-selected quantum states,”Quantum information processing, vol.13, no.1, pp.141–149, 2014.
    [91] Y. Shih,“Entangled biphoton source-property and preparation,”Reports on Progress in Physics, vol.66, no.6, p.1009, 2003.
    [92] Y. Shih and C. O. Alley,”New type of einstein-podolsky-rosen-bohm experiment using pairs of light quanta produced by optical parametric down conversion,”Physical Review Letters, vol.61, no.26, p.2921, 1988.
    [93] T. Kiess, Y. Shih, A. Sergienko, and C. Alley,“Einstein-podolsky-rosen-bohm experiment using pairs of light quanta produced by type-ii parametric down-conversion,”Physical Review Letters, vol.71, no.24, p.3893, 1993.
    [94] M. H. Rubin, D. N. Klyshko, Y. Shih, and A. Sergienko,“Theory of two-photon entan- glement in type-ii optical parametric down-conversion,”Physical Review A, vol.50, no.6, p.5122, 1994.
    [95] C.-K. Hong, Z.-Y. Ou, and L. Mandel,“Measurement of subpicosecond time intervals between two photons by interference,”Physical review letters, vol.59, no.18, p.2044, 1987.
    [96] M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by in- dependent pulsed sources a,”Annals of the New York academy of Sciences, vol.755, no.1, pp.91–102, 1995.
    [97] J. Ciosek,“Narrow-band interference filter with polarizing feature,”Optics communi- cations, vol.136, no.5-6, pp.357–359, 1997.
    [98] B. Bell, M. Tame, A. S. Clark, R. Nock, W. Wadsworth, and J. G. Rarity,“Experimental characterization of universal one-way quantum computing,”New Journal of Physics, vol.15, no.5, p.053030, 2013.
    [99] J.-C. Xu,“Quantifying one-way quantum computation and its applications,”A Thesis Submitted fot the Degree of Master, 2020.
    [100] T. Tung-Ju,“Experimental realization of semi-device-independent one-way quantum computation,”Master's thesis, 2022.
    [101] Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih,“Experimental entanglement concentration and universal bell-state synthesizer,”Physical Review A, vol.67, no.1, p.010301, 2003.
    [102] T. Kim, M. Fiorentino, and F. N. Wong,“Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,”Physical Review A, vol.73, no.1, p.012316, 2006.
    [103] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, ”Quantum pro- cess capability,”Scientific reports, vol.9, no.1, pp.1–12, 2019.
    [104] S.-H. Chen, M.-L. Ng, and C.-M. Li,“Quantifying entanglement preservability of experimental processes,”Physical Review A, vol.104, no.3, p.032403, 2021.

    下載圖示 校內:2025-09-20公開
    校外:2025-09-20公開
    QR CODE