簡易檢索 / 詳目顯示

研究生: 萬星呈
Wan, Hsing-Cheng
論文名稱: 佈於整數模一百二十八的二次剩餘碼
Quadratic Residue Codes over Z128
指導教授: 俞勇
Yu, Yong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 166
中文關鍵詞: 生成元二次剩餘碼
外文關鍵詞: quadratic residue codes, idempotent generators
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   二次剩餘碼是由Andrew Gleason所定義出來的,這是一種很特殊的循環碼,而佈於整數模q^m的二次剩餘碼在Bonnecaze, Solé 以及 Calderbank [Bo-So-Ca] 與 Pless 以及 Qian [Pl-Qi]等人的研究下,得到許多良好的性質,在[Chiu-Yu-Yau]的文章中,對於整數模八的二次剩餘碼有詳細的介紹,在本文中,我們推廣到整數模一百二十八的二次剩餘碼,先找出整數模一百二十八的生成元(idempotent),進而生成出整數模一百二十八的二次剩餘碼,接著證明這跟佈於體一樣有許多良好的性質,在[Ka]文章中,Kanwar對於整數模q^m且長度為p的二次剩餘碼找出一般性的結果,這個地方的p是個不為2的質數,而在模4q的情況下,等於+1或 1,此外Kanwar也擴充了二次剩餘碼的概念,並且找到它的對偶碼,我們可以證明出整數模一百二十八的擴充二次剩餘碼有很多的同構群,藉由[Ma-Sl]所使用的排列解碼方法。

    A set of n-tuples over Z128 is called a code over Z128 or a Z128 code if it is a Z128 module. A particularly interesting family of cyclic codes is the quadratic residue codes. Quadratic residue codes were first defined by Andrew Gleason. The Z(q^m) quadratic residue codes were studied by beautiful works of Bonnecaze, Solé and Calderbank [Bo-So-Ca] and Pless and Qian [Pl-Qi] . In [Chiu-Yu-Yau] , the authors studied the Z8 quadratic residue codes in some detail. In this paper, we define Z128 quadratic residue codes in terms of their idempotent generators and show that these codes also have many good properties which are analogous in many respects to the properties of quadratic residue codes over a field. In [Ka], Kanwar has general results on quadratic residue Z(q^m)-codes of length p where p is an odd prime congruent to   modulo 4q. The concepts of extended quadratic residue Z(q^m)-codes is introduced in [Ka] and their duals are obtained. The purpose of this paper is to show that extended quadratic residue codes over Z128 have large automorphism groups which will be useful in decoding these codes by using the powerful permutation decoding methods described in [Ma-Sl]. 

    CONTENT CHAPTER1 Introduction....................1 CHAPTER2 Quadratic Residue Codes over....43 REFERENCE ................................166

    [Bo-So-Ca]:  A. Bonnecaze, P. Solé and A.R. Calderbank, Quaternary Quadratic Residue Codes and Unimodular Lattices, IEEE Trans. Inform. Theory, 41(1995), 366-377.
    [Di]   L.E. Dickson, Linear Groups, Dover Publications, Inc. NY,1958.
    [Ka-Lp]  P. Kanwar and S. López-Permouth, Cyclic codes over the integers modulo p^m, Finite Fields and Their Applications, 3(1997), 334-352.
    [Le-Ma-Pl]  J.S. Leon, J.M. Masley, and V. Pless, Duadic Codes, IEEE Trans. Inform. Theory, 30(1994), 709-714.
    [Ma-Sl]  F.J. MacWilliams and N.J.A. Sloane, Theory of Error-Correcting Codes, North Holland, Amsterdam, 1978.
    [Pl]   V. Pless, Introduction to the Theory of Error- Correcting Codes, Second Edition, Wiley Interscience, 1989.
    [Pl-Qi]  V. Pless and Z. Qian, Cyclic Codes and Quadratic Residue Codes over Z4, IEEE Transactions on Information Theory, 42, No.5(1996), 1594-1600.
    [Pe] O. Perron, Bemerkungen über die Verteilung der quadratischen Reste, Math. Zeit., 56(1952), 122-130.
    [Chiu-Yu-Yau] Mei Hui Chiu, Yung Yu, Stephen S.-T. Yau, Z8-Cyclic Codes and Quadratic Residue Codes, Advancesin Applied Mathematics 25, 12-33(2000).
    [許琮琳]  佈於整數模拾陸的二次剩餘碼,國立成功大學應數所碩士論文,June 1999。
    [郭威良]  佈於整數模三十二的二次剩餘碼,國立成功大學應數所碩士論文,June 2003。

    下載圖示 校內:2007-07-12公開
    校外:2007-07-12公開
    QR CODE