簡易檢索 / 詳目顯示

研究生: 李政彥
Lee, Jheng-Yan
論文名稱: 可電控聚合物穩定膽固醇液晶雷射之研究
Electrically tunable polymer-stabilized cholesteric liquid crystal laser
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 聚合物穩定膽固醇液晶液晶雷射分佈式布拉格反射鏡波板共振模態
外文關鍵詞: polymer-stabilized cholesteric, liquid crystal, liquid crystal laser, distributed Bragg reflector, wave plate, resonant mode
相關次數: 點閱:145下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究與發展具有三明治結構之可電控聚合物穩定膽固醇液晶(polymer-stabilized liquid crystal,PSCLC)雷射。此雷射樣品包含三層結構,中間層為染料摻雜向列型液晶(dye-doped nematic liquid crystal,DDNLC),兩側為PSCLC層。中間層之染料扮演增益介質之角色,外側PSCLC層扮演分佈式布拉格反射鏡之角色,外激產生的螢光可被兩側PSCLC反射於NLC層內達到共振條件,進一步於這些共振模態間的競爭中產生雷射閥值最低之雷射輸出。實驗結果發現,經強紫外光照聚合完成後的PSCLC不僅產生聚合物網路穩固住膽固醇液晶之螺旋結構,且伴隨產生許多正負離子。在外加電壓時,這些離子重新分佈以至於PSCLC內部造成螺距梯度,進而達成反射波帶變寬現象。另外,中間夾層具有水平配向之DDNLC另外具有波板功能,做為半與全波板時,於元件反射波帶內之穿射率分別為最高與最低值,雷射共振模態將會於穿透率最高時獲得。當同時外加相同電壓於兩側之PSCLC時,反射波帶的增寬可造成共振模態數量增加,等效於反射波帶兩側共振模態在頻譜上可往外位移,當施加的電壓越高,兩側共振模態此位移量越大,此時產生的雷射輸出波長位移量也會越大,實驗結果顯示此元件電控雷射輸出位移量最大可達70 nm且電調控特性具有可逆性。此外,本論文也證明在改變DDNLC厚度之下,共振模態會跟著變化,以至於雷射輸出波長可位移量亦會跟著變化。另外,若只使用單種螢光染料則可電控雷射輸出波長之位移量最多僅有51 nm,若使用兩種染料加以混合,使其螢光分布變為更寬廣,則可成功使雷射可電控輸出波長達70 nm。

    The thesis mainly investigate and develop electrically tunable polymer-stabilized liquid crystal,PSCLC) lasers with a sandwiched structure. This structure includes three layers: a dye-doped nematic liquid crystal (DDNLC) layer is located in the middle and two identical PSCLC layers are located in between the DDNLC layer, which play roles of gain medium and distributed Bragg reflector (DBR), respectively. The fluorescence photons, obtained by the stimulated dyes by the externality, are confined in the DDNLC layer by the repeated reflection from the DBRs such that some resonant modes can be obtained. Through the competition among these resonant modes by considering the gains and losses for these modes, the lasing output can be obtained with a lowest lasing threshold.Experimental results show that the strong UV light irradiation can lead to the generation of the polymer network that can stabilize the CLC helical structure in the PSCLC but also of lots of positive and negative ions. The ions may redistribute in the PSCLC in the presence of the external voltage such that a pitch gradient can form along the applied field and the reflection band of the PSCLC can become broadening. In addition, the inner homogenously-aligned DDNLC layer plays another role of wave plate. Relatively maximum and minimum transmittance of the PSCLC can be obtained as the DDNLC plays a half- and a full-wave plate, respectively. The resonant modes can occur as the PSCLC has relative maxima. When applying identical voltage on the outer PSCLC layers, the broadening of the reflection band may increase the number of the resonant mode, which result efficiently increases the outward shift of the two resonant modes near the bandedges of the reflection band in spectrum. As the voltage increases, the shift of the two modes becomes larger, resulting in the larger shift of the lasing output. The largest shift for the lasing output of the PSCLC laser can be as large as 70 nm and the electrical tuning is reversible.In addition, the thesis also demonstrates that the lasing wavelength can change with varying the thickness of the DDNLC layer and the fluorescence distribution of the laser dye. The change of the thickness of the DDNLC can change the number of the resonant mode, and thus equivalently change the shift of the lasing wavelength. The fluorescence distribution of two types of laser dye can be more broadening than that of a single laser dye such that the largest amount of lasing tuning can increase from 51 nm to 70 nm.

    中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 第二章 液晶 4 2-1液晶的起源 4 2-2液晶的分類 4 2-2-1溶致型液晶 5 2-2-2熱致型液晶 5 2-3液晶的物理特性 9 2-3-1光學異向性和雙折射性 9 2-3-2介電異向性 12 2-3-3液晶之連續彈性體理論 14 第三章 膽固醇液晶和聚合物穩定膽固醇液晶 15 3-1膽固醇液晶的光學特性 15 3-2影響螺距之因素 16 3-2-1手性分子濃度 16 3-2-2溫度 17 3-2-3磁場和電場 17 3-2-4光場 19 3-3聚合物穩定膽固醇液晶 19 3-3-1聚合反應 21 3-3-2聚合物穩定膽固醇液晶結構 22 3-3-3聚合物穩定膽固醇液晶結構受外加電壓調制之物理機制 23 第四章 雷射機制與原理 26 4-1雷射基本原理 26 4-1-1光子和原子(物質)之間的交互作用 26 4-1-2居量反轉(粒子數分佈反轉) 29 4-1-3雷射產生之過程 30 4-2分佈式回饋雷射機制 31 4-3膽固醇液晶之能隙邊緣雷射機制 32 4-4法布立-培若干涉儀 34 4-5分佈式布拉格雷射 35 第五章 樣品製備與實驗架設 39 5-1實驗樣品材料 39 5-2實驗樣品製作流程 42 5-2-1玻璃基板的製備 42 5-2-2製作空樣品 42 5-2-3材料配方調配 43 5-2-4製作聚合物穩定膽固醇液晶樣品 45 5-3製作三明治結構樣品 45 5-4實驗架設 46 第六章 結果與討論 49 6-1聚合物穩定膽固醇液晶和三明治結構之電控反射特性 49 6-1-1電壓對聚合物穩定膽固醇液晶樣品之影響 49 6-1-2電壓對三明治結構樣品之影響 52 6-2三明治結構樣品在不同厚度及電壓下之雷射研究 56 6-2-1夾層厚度為125 μm之三明治結構樣品之雷射特性 56 6-2-2夾層厚度為75 μm之三明治結構樣品之雷射特性 60 6-2-3夾層厚度為50 μm之三明治結構樣品之雷射特性 63 6-3混合雷射染料增加三明治結構樣品之雷射可電調控範圍 69 第七章 結論與未來展望 73 7-1結論 73 7-2未來展望 73 參考文獻 74

    1.P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, New York, 1993).
    2.D.-K. Yang and S. T. Wu, Fundamental of liquid crystal devices (Wiley, 2006).
    3.Y. Huang, M. Jin and S. Zhang, “Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystal,” Jpn. J. Appl. Phys. 53, 072601 (2014).
    4.K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19, 10174-10179 (2011).
    5.J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389-393 (2016).
    6.V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369-416 (2003).
    7.H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676-685 (2010).
    8.I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: Distributed feedback and photonic bandgap lasing models,” Prog. Quant. Electron. 41, 1-22 (2015).
    9.J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765-15776 (2013).
    10.L.-J. Chen, J.-D. Lin, S.-Y. Huang, T.-S. Mo, and C.-R. Lee, “Thermally and Electrically Tunable Lasing Emission and Amplified Spontaneous Emission in a Composite of Inorganic Quantum Dot Nanocrystals and Organic Cholesteric Liquid Crystals,” Adv. Opt. Mater. 1, 637-643 (2013).
    11.Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded with a Liquid Crystal Nanopore Network,” Adv. Mater. 23, 5498-5501 (2011).
    12.T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39, 6490-6493 (2014).
    13.S. M. Wood, F. Castles, S. J. Elston, and S. M. Morris, “Wavelength-tunable laser emission from stretchable chiral nematic liquid crystal gels via in situphotopolymerization,” RSC Adv. 6, 31919-31924 (2016).
    14.A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882-4885 (2012).
    15.S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002-3006 (2013).
    16.K.-Y. Yu, S.-H. Chang, C.-R. Lee, T.-Y. Hsu, and C.-T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nano grooves fabricated by nano imprint lithography,” Opt. Mater. Express 4, 234-240 (2014).
    17.H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243-7249 (2005).
    18.T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
    19.Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462-2470 (2015).
    20.H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436-1441 (2014).
    21.L.D. Sio, G.Palermo, V.Caligiuri, and C. Umeton, “Electro and pressure tunable cholesteric liquid crystal devices based on ion-implanted flexiblesubstrates,” J. Mater. Chem. C 1, 7798-7802 (2013).
    22.Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystals,” Jpn. J. Appl. Phys. 56, 080302 (2017).
    23.V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. McConney, K. M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 4, 1465-1472 (2014).
    24.H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11, 1208-1213 (2015).
    25.Sahar E and Treves D, “Bleaching and diffusion of laser dyes in solution under high power UV irradiation,” Opt. Commun. 21, 20-24 (1977).
    26.Y.-S. Lo, Y.-M. Liu, and H.-C. Yeh, “Low-voltage and wide-band tuning of lasing in a dye-doped liquid-crystal sandwich structure,” Opt. Express 23, 30421-30428 (2015).
    27.J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20, 4094-4102 (2010).
    28.C. V. Yelamaggad, G. Shanker, U. S. Hiremath, and S. Krishna Prasad, “Cholesterol-based nonsymmetric liquid crystal dimers: an overview,” J. Mater. Chem. 18, 2927-2949 (2008).
    29.K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals : Advances in Design, Fabrication, and Characterization (Wiley-VCH, Weinheim, Germany, 2004)
    30.S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Ltd., Chichester, England, 2001)
    31.D. C. O'Shea, W. R. Callen, and W. T. Rhodes, Introduction to Lasers and Their Applications (Addison Wesley, Boston, 1977).
    32.H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband Cavity-Mode Lasing from Dye-Doped Nematic Liquid Crystals Sandwiched by Broadband Cholesteric Liquid Crystal Bragg Reflectors,” Adv. Mater. 22, 2680-2684 (2010).
    33.I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York, 1995).
    34.P. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163-165 (1968).
    35.R. B. Meyer, “Effects of Electric and Magnetic Fields on Structure of Cholesteric Liquid Crystals,” Appl. Phys. Lett. 12, 281-283 (1968).
    36.S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18, 9496-9503 (2010).
    37.T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Opt. Commun. 283, 3434-3436 (2010).
    38.L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E 86, 051706 (2012).
    39.B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 2007).
    40.A. Yariv and P. Yeh, Photonics, 6th ed. (Oxford University Press, New York, 2007).
    41.J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, Inc., New Jersey, 1995).
    42.沈柯,雷射原理教程 (亞東書局,臺北市,1990).
    43.H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152-154 (1971).
    44.H. Takezoe, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, Inc., New Jersey, 2012).
    45.S.G. Lipson, H. Lipson, and D.S. Tannhauser, Optical physics, 3rd ed., (Cambridge University Press, 2008).
    46.S. Y. Lu, L. C. Chien, K. State, L. C. Chien, and K. State, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91, 131119 (2007).

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE