簡易檢索 / 詳目顯示

研究生: 陳柏安
Chen, Po-An
論文名稱: 以高效率電容去離子法從無機廢水回收貴重金屬與淨水
Recycling of noble metals and freshwater from inorganic wastewater by high-efficiency capacitive deionization methods
指導教授: 王鴻博
Wang, H. Paul
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 348
中文關鍵詞: 電容去離子流體電極核殼奈米粒子假電容貴重金屬離子篩生物質廢物X光吸收近邊緣結構延伸X光吸收精細結構磺化氧化石墨烯
外文關鍵詞: Capacitive deionization, fluidized electrode, core-shell nanoparticle, pseudocapacitive, noble metal, ion-sieve, biomass waste, EXAFS, XANES, sulfonated GO
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極端環境與人口遽增導致淡水資源短缺與分配不均,影響民生與經濟發展,嚴重至可能發生戰爭。不僅工廠排放之廢水污染環境,產業所需貴重金屬需求日益增加。電容去離子(CDI)法具低能耗與環境友善優勢,已成為非常有潛力之脫鹽技術,利用多孔活性碳表面之電雙層電吸附水中離子,可以同時達到分離離子與回收淨水之目標。因此,發展高效率電容去離子法從無機廢水回收貴重金屬與淨水兼具。
    本研究包括:利用棕梠殼與苦茶油殼廢棄物回收製成活性碳(activated carbon, AC),結合奈米銀核殼材料(Ag@C),作為具消毒功能的CDI電極,也合成假電容性核殼奈米粒子(M3O4@C (M:Mn、Co或Fe))、AC@sulfonated graphene oxide (AC@SGO)作為流經(flow-by)與流體式(fluidized)之CDI電極,並以SEM/TEM、BET、FTIR、XPS、XAS、CV、EIS技術進行材料特性分析。此外,利用X光吸收近邊緣光譜結構(XANES)與X光吸收延伸光譜精細結構(EXAFS)分析烏腳病區地下水與垃圾填埋氣(LFG)冷凝物之砷形態。
    實驗結果顯示,在施加反轉電壓(-1.6至+1.6 V)下,具高消毒能力之Ag@C/AC電極之電吸附效率可達40%。M3O4@C在+1.2 V下,發現電吸附效率增加至48%。比較M3O4@C/AC與AC電極之能量存儲之效率,M3O4@C/AC電極在+1.2 V下比純AC電極(54%)具高能量存儲效率(89%)。
    從XANES光譜顯示As(III)0在CDI電吸附過程會氧化為As(V)-,模擬含砷地下水中砷的平均電吸附效率為64~78%,氧化速率常數高達0.93 h-1。在實際受砷污染之地下水,儘管水中存有其他離子(Na+、Mg2+與Ca2+),CDI 仍可有效去除 As(III)0與As(V)- (60~73%)。掩埋場廢水處理之冷凝物XANES與EXAFS結果顯示硫醇化砷化合物的砷XANES 光譜與LFG相似。在冷凝物中觀察到的As-S/As-O距離與甲基化硫代砷酸鹽接近。
    本研究另一個重點為處理含重金屬污染之廢水並研發可回收其中貴重金屬離子之可行性。含氰化物之電鍍廢水具環境危害性,利用CDI可處理氰化物之電鍍廢水,並同時從廢水中回收貴重金屬(例如:Ag+)。CDI在模擬KCN (200 ppm)溶液,使用|AC@SGO(流體電極)|AC(流體電極)|流體化電極,對 CN- 的電吸附效率高達29~34%。而在含氰電鍍廢水中存有其他離子(如Ag+和K+)的情況下,流體化CDI (FdCDI)也能有效去除氰離子(41~51%),而最大電吸附效率為75%。銀回收效率與回收量分別為69%與6.1 mg/g。
    鋰具出色的電化學性能,離子交換法通常用於從溶液中回收貴重金屬離子,例如鋰離子篩法可有效從溶液中回收鋰。鋰鈦氧化物 (Li4Ti5O12) 離子篩,在氯化鋰(500 ppm)溶液中,離子篩回收鋰量高達33 mg/g.day,兩天過後其仍可維持97%之性能。在含其他離子(Na+, K+, Mg2+ and Ca2+)情況下,只有輕微受到影響,其鋰回收容量仍高(28 mg/g),主歸因於鋰離子篩具狹窄的交換位點,可防止較大離子進入。離子篩在亞甲基藍降解實驗,十分鐘內可轉換 MB (1-XMB) 約為 97%,證明離子篩具光催化降解有機物能力。本研究結果證明利用高效電容去離子與離子篩法可從無機廢水回收貴重金屬與淡水之可行性。

    Desalination for recycling water is of increasing importance due to the scarcity of water. Therefore, it is of importance to develop the high-efficiency capacitive deionization (CDI) processes for water recycling and reuse. Capacitive deionization (CDI) has emerged as a promising method for desalination due to its low energy consumption, economic attractiveness, and environmental friendliness. CDI is operated by weak electrosorption of ionic species in the electric double layer (EDL) on the surfaces of porous activated carbon (AC). Desalination performances of the AC recycled from shell wastes, pseudocapacitive M3O4@C (M: Mn, Co or Fe) and AC@SGO electrodes have been determined on flow-by and fluidized CDI reactors. Additionally, speciation of arsenic in the BFD endemic groundwater, landfill gas (LFG) and condensate/renewable natural gas (RNG) effluents have been studied by XANES and EXAFS to a better understanding of arsenic behavior in molecular-scale in environment.
    The electrosorption efficiency of saltwater ([NaCl=1000 ppm]) using the AC recycled from shell wastes as electrodes can be up to 28% under 1.2 V. After the potential polarity is reversed (1.6 V to -1.6 V), its electrosorption efficiencies are considerably increased (capable of 40%). The Ag@C core-shell nanoparticle dispersed AC electrodes show high desalination performance and additional disinfection efficiency (98%) for CDI of saltwater. The pseudocapacitive Mn3O4@C/AC electrodes for CDI of saltwater ([NaCl]=1000 ppm) show much better desalination performances with a high optimized salt removal (600 mg/g·day) and electrosorption capacity (EC) (25 mg/g) than the conventional AC electrodes (288 mg/g·day and 12 mg/g, respectively). The total stored energy densities and energy storage efficiency of the Mn3O4@C/AC electrode are greater than those of the conventional AC electrodes by 89% and 54%, respectively.
    The in situ XANES spectra show the oxidation of neutral H3AsO3 (As(III)0) to less toxic H2AsO4- (As(V)-) with a high electrosorption efficiency (79%) under 1.2 V for the removal of As(III) from a BFD groundwater by CDI. A high oxidation rate constant (0.93 h-1) for As(III)0 to As(V)- has been found allowing the electrosorption of As(V)- on the meso- and micro-pores of the AC with rate constants of 0.021 and 0.0013 h-1, respectively. The XANES spectra of the LFG/RNG matrixes show the consistent decrease in the position of the absorption edge of arsenic atoms, similar to that characteristic for thiolated arsenic compounds and arsenic sulfides. This better understanding for the intrinsic chemistry and reactivity of arsenic species present in LFG/RNG, potentially assisting in the development of treatment methods to control arsenic in a landfill system.
    Another area of focus relates to the implementation of sustainable technologies for the water treatment of metal- and cyanide-contaminated wastewater, as well as the recycling of noble metals (i.e. Ag+ and Li+) from the wastewater. Experimentally, the electrosorption efficiency for CN- of the KCN electroplating wastewater is as high as 34% using the fluidized electrodes, i.e.,∣AC@SGOf (fluidized electrode)∣ACf (fluidized electrode)∣. The electrosorption efficiency and capacity for silver recycling are 69% and 6.1 mg/g, respectively.
    Lithium is a critically important element in numerous modern applications, owing to its highly advantageous electrochemical properties and possessing the high specific heat capacity among all solid elements. Ion exchange method such as using ion-sieve has been commonly used for recycling of noble metal ions from the inorganic wastewater. The feasibility for recycling of lithium from lithium-containing water using the lithium titanium oxide (Li4Ti5O12) ion-sieves (LIH) exchanged by HCl solution (0.3 M) was investigated. About 33 mg/g of lithium can be recycled from a lithium-containing water by ion-sieve within 24 h. The Ti K-edge XANES spectra of the ion-sieve show the square pyramid ((Ti=O)O4) and octahedral (TiO6) sites attributed to the pre-edge features of A2 (4970.5 eV) and A3 (4971.8 eV) (the distinguishable photoactive sites) for photodegradation of methylene blue with a high efficiency (97%). This work demonstrated that the feasibility for recycling of noble metals and freshwater from inorganic wastewater by high-efficiency capacitive deionization and ion-sieve methods.

    摘要 I ABSTRACT III 誌謝 VI CONTENT VII LIST OF TABLE XII LIST OF FIGURE XIV CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 Desalination 4 2.1.1 Multistage flash evaporation 8 2.1.2 Multi effect distillation 10 2.1.3 Reverse osmosis 12 2.1.4 Forward osmosis 12 2.1.5 Electrodialysis 15 2.1.6 Microbial desalination cell 17 2.1.7 Hybrid systems 20 2.2 Capacitive Deionization 20 2.2.1 Electric double layer processes 20 2.2.2 Faradaic processes 25 2.2.3 Supercapacitor 29 2.2.4 CDI cell architectures 38 2.2.5 Membrane CDI cell architecture 41 2.2.6 Flow CDI cell architecture 42 2.2.7 Fluidized CDI cell architecture 42 2.2.8 CDI electrode materials 46 2.2.9 Carbon-based electrode from biomass wastes 54 2.2.10 Energy consumptions 68 2.2.11 Energy recovery 72 2.3 Green remediation 77 2.3.1 Toxicity in wastewater and groundwater 77 2.3.2 Inorganic wastewater treatment 90 2.3.3 Recycling of noble metal ions 105 2.3.3.1 Recycling of silver 108 2.3.3.2 Recycling of lithium 111 CHAPTER 3 MATERIALS AND METHODS 124 3.1 Experimental overview 124 3.2 Capacitive deionization 127 3.2.1 Flow-by CDI reactors 127 3.2.2 Preparation of recycled activated carbon from biomass wastes 129 3.2.3 Preparation of core-shell nanoparticles 129 3.2.4 Preparation of graphene oxide and sulfonated graphene oxide 130 3.2.5 Preparation of CDI electrodes 131 3.2.6 Fluidized CDI reactor (FdCDI reactor) 131 3.3 Electrosorption experiments 135 3.3.1 Flow-by CDI experiment 135 3.3.2 Fluidized CDI experiment 135 3.3.3 Feed water 135 3.3.4 Electrosorption performance 136 3.4 Antibacterial tests 139 3.4.1 Disk-diffusion test 139 3.4.2 Minimum inhibitory concentration (MIC) test 139 3.5 Energy recovery experiments 139 3.6 Ion-sieve experiments 140 3.6.1 Preparation of Li4Ti5O12 140 3.6.2 Preparation of lithium ion-sieve (Li-IS) 141 3.6.3 Preparation of Li4Ti5O12, LIH, and LIV electrode 141 3.6.4 Capture of lithium 141 3.2.5 Photodegradation 142 3.5 Characterization 142 3.5.1 Scanning electron microscope (SEM) 142 3.5.2 Transmission electron microscopy (TEM) 143 3.5.3 X-ray diffractometer spectroscopy (XRD) 143 3.5.4 X-ray photoelectron spectroscopy (XPS) 143 3.5.5 Fourier-transform infrared spectroscopy (FTIR) 143 3.5.6 Nitrogen adsorption isotherm 143 3.5.7 Contact angle 144 3.5.8 Inductively coupled plasma-mass spectrometer (ICP-MS) 144 3.5.9 Elemental analysis (EA) 144 3.5.10 X-ray absorption spectroscopy 144 3.5.11 Cyclic voltammetry (CV) 148 3.5.12 Electrochemical impedance spectroscopy (EIS) 148 4.1 Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of saltwater with disinfection functions 149 4.1.1 Introduction 151 4.1.2 Materials and methods 153 4.1.3 Results and discussion 155 4.1.4 Conclusions 172 4.2 Removal of toxic arsenic(III) from an old black-foot disease endemic groundwater by oxidative electrosorption 173 4.2.1 Introduction 175 4.2.2 Materials and methods 177 4.2.3 Results and discussion 179 4.2.4 Conclusions 191 4.3 Pseudocapacitive deionization of saltwater by Mn3O4@C/activated carbon 192 4.3.1 Introduction 194 4.3.2 Materials and methods 196 4.3.3 Results and discussion 198 4.3.4 Conclusions 211 4.4 Energy storage with Mn3O4@C core-shell nanoparticles during pseudocapacitive capacitive deionization of saltwater 212 4.4.1 Introduction 214 4.4.2 Materials and methods 216 4.4.3 Results and discussion 217 4.4.4 Conclusions 234 4.5 Removal of cyanide with recycling of silver from a KCN electroplating wastewater by electrosorption using sulfonated GO coated activated-carbon fluidized electrodes 235 4.5.1 Introduction 237 4.5.2 Materials and methods 239 4.5.3 Results and discussion 242 4.5.4 Conclusions 260 4.6 Recycling of lithium by ion-sieve from lithium-containing water 261 4.6.1 Introduction 262 4.6.2 Materials and methods 263 4.6.3 Results and discussion 266 4.6.4 Conclusions 276 4.7 Speciation of Arsenic in the Condensate Formed in Landfill Gas Processing: Evidence of the Dominance of As-S Species 277 4.7.1 Introduction 278 4.7.2 Materials and methods 280 4.7.3 Results and discussion 283 4.7.4 Conclusions 291 CHAPTER 5 CONCLUSIONS 293 REFERENCES 295

    Abdul-Wahab, S. A., & Al-Weshahi, M. A. (2009). Brine management: substituting chlorine with on-site produced sodium hypochlorite for environmentally improved desalination processes. Water resources management, 23, 2437-2454.
    Abi Jaoude, M., Alhseinat, E., Polychronopoulou, K., Bharath, G., Darawsheh, I. F. F., Anwer, S., Baker, M. A., Hinder, S. J., & Banat, F. (2020). Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica Acta, 330, 135202. DOI: 10.1016/j.electacta.2019.135202
    Abraham, J. P., Sajan, D., Shettigar, V., Dharmaprakash, S., Němec, I., Joe, I. H., & Jayakumar, V. (2009). Efficient π-electron conjugated push–pull nonlinear optical chromophore 1-(4-methoxyphenyl)-3-(3, 4-dimethoxyphenyl)-2-propen-1-one: a vibrational spectral study. Journal of Molecular Structure, 917(1), 27-36.
    Aende, A., Gardy, J., & Hassanpour, A. (2020). Seawater desalination: A review of forward osmosis technique, its challenges, and future prospects. Processes, 8(8), 901. DOI:10.3390/pr8080901
    Ahmad, S., Nawaz, T., Ali, A., Orhan, M. F., Samreen, A., & Kannan, A. M. (2022). An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International journal of hydrogen energy. DOI: 10.1016/j.ijhydene.2022.04.099
    Ahmed, F. T., Khan, A. H. A. N., Khan, R., Saha, S. K., Alam, M. F., Dafader, N. C., Sultana, S., Elius, I. B., & Al Mamum, S. (2021). Characterization of arsenic contaminated groundwater from central Bangladesh: irrigation feasibility and preliminary health risks assessment. Environmental Nanotechnology, Monitoring & Management, 15, 100433. DOI: 10.1016/j.enmm.2021.100433
    Ahmed, M. F. (2001). An overview of arsenic removal technologies in Bangladesh and India. Paper presented at the Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka.
    Al-Juboori, R. A., Bakly, S., Bowtell, L., Alkurdi, S. S., & Altaee, A. (2022). Innovative capacitive deionization-degaussing approach for improving adsorption/desorption for macadamia nutshell biochar. Journal of Water Process Engineering, 47, 102786. DOI: 10.1016/j.enmm.2021.100433
    Al-Mamun, A. (2022). Effect of external resistance on microbial electrochemical desalination, sewage treatment, power and resource recovery. Sustainable Energy Technologies and Assessments, 49, 101718. DOI: 10.1016/j.seta.2021.101718.
    Al bkoor Alrawashdeh, K., Al-Zboon, K. K., Momani, R., Momani, T., Gul, E., Bartocci, P., & Fantozzi, F. (2022). Performance of dual multistage flashing-recycled brine and solar power plant, in the framework of the water-energy nexus. Energy Nexus, 5, 100046. DOI: 10.1016/j.nexus.2022.100046.
    Al Suwaidi, F., Younes, H., Sreepal, V., Nair, R. R., Aubry, C., & Zou, L. (2019). Strategies for tuning hierarchical porosity of 3D rGO to optimize ion electrosorption. 2D Materials, 6(4), 045010. DOI: 10.1088/2053-1583/ab2927
    Alencherry, T., Naveen, A., Ghosh, S., Daniel, J., & Venkataraghavan, R. (2017). Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization. Desalination, 415, 14-19.
    Alenezia, I. A., Merdawb, A. A., & Al-Mutazc, I. S. Transfer of ions in forward osmosis process using reverse osmosis rejects as draw solution and industrial wastewater as feed water.
    Ali, A., Hussain, M. M., Niazi, N. K., Younas, F., Farooqi, Z. U. R., Zeeshan, N., Javed, M. T., Shahid, M., & Bibi, I. (2023). A Comparison of Technologies for Remediation of Arsenic-Bearing Water: The Significance of Constructed Wetlands. In Global Arsenic Hazard (pp. 223-245): Springer.
    Aljarrah, S., Alsabbagh, A., & Almahasneh, M. (2023). Selective recovery of lithium from Dead Sea end brines using UBK10 ion exchange resin. The Canadian Journal of Chemical Engineering, 101(3), 1185-1194.
    Alka, S., Shahir, S., Ibrahim, N., Ndejiko, M. J., Vo, D.-V. N., & Abd Manan, F. (2021). Arsenic removal technologies and future trends: a mini review. Journal of cleaner Production, 278, 123805. DOI: 10.1016/j.jclepro.2020.123805
    Alkhadra, M. A., Su, X., Suss, M. E., Tian, H., Guyes, E. N., Shocron, A. N., Conforti, K. M., de Souza, J. P., Kim, N., & Tedesco, M. (2022). Electrochemical methods for water purification, ion separations, and energy conversion. Chemical Reviews, 122(16), 13547-13635.
    Allison, A., & Andreas, H. (2019). Minimizing the Nyquist-plot semi-circle of pseudocapacitive manganese oxides through modification of the oxide-substrate interface resistance. Journal of Power Sources, 426, 93-96.
    Alsabbagh, A., Aljarrah, S., & Almahasneh, M. (2021). Lithium enrichment optimization from Dead Sea end brine by chemical precipitation technique. Minerals Engineering, 170, 107038. DOI: 10.1016/j.mineng.2021.107038
    Alsarayreh, A. A., Al-Obaidi, M., Al-Hroub, A., Patel, R., & Mujtaba, I. (2020). Evaluation and minimisation of energy consumption in a medium-scale reverse osmosis brackish water desalination plant. Journal of cleaner Production, 248, 119220. DOI: 10.1016/j.jclepro.2019.119220
    Alsultan, A., Alkhaldi, A., Alsaikhan, K., Li, J., Xie, R., & Peng, Z. (2023). Surface-Treated Carbon Black for Durable, Efficient, Continuous Flow Electrode Capacitive Deionization. Separation and Purification Technology, 123444.
    Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418-1433.
    Amran, F., & Zaini, M. A. A. (2021). Valorization of Casuarina empty fruit-based activated carbons for dyes removal-activators, isotherm, kinetics and thermodynamics. Surfaces and Interfaces, 25, 101277. DOI: 10.1016/j.surfin.2021.101277
    Anand, V., & Pandey, A. (2022). Role of microbes in biodegradation of cyanide and its metal complexes. In Development in Wastewater Treatment Research and Processes (pp. 205-224): Elsevier.
    Anderson, A., Anbarasu, A., Pasupuleti, R. R., Sekar, M., Praveenkumar, T., & Kumar, J. A. (2022). Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends. Chemosphere, 133724. DOI: 10.1016/j.chemosphere.2022.133724
    Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856.
    Antony, F. M., & Wasewar, K. L. (2023). Ionic liquids as green solvents in process industry for reaction and separation: emphasizing on protocatechuic acid recovery. Chemical Engineering Communications, 1-8.
    Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution: CRC press.
    Arab, M., Akbarian, H., Gheibi, M., Akrami, M., Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Tian, G. (2022). A soft-sensor for sustainable operation of coagulation and flocculation units. Engineering Applications of Artificial Intelligence, 115, 105315. DOI: 10.1016/j.engappai.2022.105315.
    Arai, Y. (2010). Arsenic and antimony. Trace elements in soils, 381-407.
    Arenas-Blanco, B. A., Pérez-Rodríguez, E. M., Hernández, R. C., Santos-Santos, N. s., & Mejía-Ospino, E. (2021). Sulfonated graphene oxide nanofluid: potential applications for enhanced oil recovery. Energy & Fuels, 35(24), 20071-20078.
    Arjoon, K. K., & Speight, J. G. (2022). Bioremediation as a sustainable solution for environmental contamination by petroleum hydrocarbons. Sustainable Solutions for Environmental Pollution: Air, Water and Soil Reclamation, 147-187.
    Ashraf, H. M., Al-Sobhi, S. A., & El-Naas, M. H. (2022). Mapping the desalination journal: A systematic bibliometric study over 54 years. Desalination, 526, 115535. DOI: 10.1016/j.desal.2021.115535
    Awad, A. M., Jalab, R., Nasser, M. S., & Hussein, I. A. (2022). Membrane-based treatment of petroleum wastewater. In Petroleum Industry Wastewater (pp. 103-122): Elsevier.
    Awwad, A. M., & Farhan, A. M. (2012). Equilibrium, Kinetic and thermodynamics of biosorption of lead (II) copper (II) and cadmium (II) ions from aqueous solutions onto olive leaves powder. American Journal of Chemistry, 2(4), 238-244.
    Ayub, A., Srithilat, K., Fatima, I., Panduro-Tenazoa, N. M., Ahmed, I., Akhtar, M. U., Shabbir, W., Ahmad, K., & Muhammad, A. (2022). Arsenic in drinking water: overview of removal strategies and role of chitosan biosorbent for its remediation. Environmental Science and Pollution Research, 29(43), 64312-64344.
    Ayyaru, S., & Ahn, Y.-H. (2021). Enhanced performance of sulfonated GO in SPEEK proton-exchange membrane for microbial fuel-cell application. Journal of Environmental Engineering, 147(2), 04020153.
    Azmi, A., Jai, J., Zamanhuri, N., & Yahya, A. (2018). Precious metals recovery from electroplating wastewater: A review. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI: 10.1088/1757-899X/358/1/012024
    Bai, B.-L., Du, S., Li, M.-J., Xue, X.-D., & Tao, W.-Q. (2022). A novel solar-driven water and electricity cogeneration integrated system by multistage vaporization enthalpy recycling. Desalination, 542, 116040. DOI: 10.1016/j.desal.2022.116040
    Bank, W. (2005). Towards a More Effective Operational Response: Arsenic Contamination of Groundwater in South and East Asian Countries, Volume 1, Policy Report: World Bank.
    Bao, L.-R., Zhang, J.-Z., Tang, W.-P., & Sun, S.-Y. (2023). Synthesis and adsorption properties of metal oxide-coated lithium ion-sieve from salt lake brine. Desalination, 546, 116196. DOI: 10.1016/j.desal.2022.116196. DOI: 10.1016/j.desal.2022.116196
    Baran, T., Wojtyła, S., Minguzzi, A., Rondinini, S., & Vertova, A. J. A. C. B. E. (2019). Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Applied Catalysis B: Environmental, 244, 303-312.
    Baroud, T. N., & Giannelis, E. P. (2019). Role of mesopore structure of hierarchical porous carbons on the electrosorption performance of capacitive deionization electrodes. ACS Sustainable Chemistry & Engineering, 7(8), 7580-7596.
    Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical society, 73(1), 373-380.
    Barros, K. S., Marti-Calatayud, M. C., Ortega, E. M., Perez-Herranz, V., & Espinosa, D. C. R. (2020). Chronopotentiometric study on the simultaneous transport of EDTA ionic species and hydroxyl ions through an anion-exchange membrane for electrodialysis applications. Journal of Electroanalytical Chemistry, 879, 114782.
    Bartholomew, T. V., Mey, L., Arena, J. T., Siefert, N. S., & Mauter, M. S. (2017). Osmotically assisted reverse osmosis for high salinity brine treatment. Desalination, 421, 3-11.
    Basha, I. K., El-Monaem, A., Eman, M., Khalifa, R. E., Omer, A. M., & Eltaweil, A. S. (2022). Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology. Scientific Reports, 12(1), 1-17.
    Battaglia, G., Berkemeyer, L., Cipollina, A., Cortina, J. L., Fernandez de Labastida, M., Lopez Rodriguez, J., & Winter, D. (2022). Recovery of lithium carbonate from dilute Li-rich brine via homogenous and heterogeneous precipitation. Industrial & Engineering Chemistry Research, 61(36), 13589-13602.
    Beak, D. G., Wilkin, R. T., Ford, R. G., & Kelly, S. D. (2008). Examination of arsenic speciation in sulfidic solutions using X-ray absorption spectroscopy. Environmental science & technology, 42(5), 1643-1650.
    Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., & Belver, C. (2020). Review on activated carbons by chemical activation with FeCl3. Journal of Carbon Research, 6(2), 21. DOI: 10.3390/c6020021
    Belogolova, G., Gordeeva, O., Sokolova, M., Pastukhov, M., Vaishlya, O., Poletaeva, V., & Belozerova, O. (2020). Transformation of lead compounds in the soil-plant system under the influence of Bacillus and Azotobacter rhizobacteria. Chemistry and Ecology, 36(3), 220-235.
    Benalia, M. C., Youcef, L., Bouaziz, M. G., Achour, S., & Menasra, H. (2022). Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arabian Journal for Science and Engineering, 47(5), 5587-5599.
    Bennett, A. (2014). Current challenges in energy recovery for desalination. Filtration Separation, 51(5), 22-27.
    Benítez, A., Amaro-Gahete, J., Chien, Y.-C., Caballero, Á., Morales, J., & Brandell, D. (2022). Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renewable and Sustainable Energy Reviews, 154, 111783. DOI: 10.1016/j.rser.2021.111783
    Bharath, G., Arora, N., Hai, A., Banat, F., Savariraj, D., Taher, H., & Mangalaraja, R. (2020). Synthesis of hierarchical Mn3O4 nanowires on reduced graphene oxide nanoarchitecture as effective pseudocapacitive electrodes for capacitive desalination application. Electrochimica Acta, 337, 135668. DOI: 10.1016/j.electacta.2020.135668
    Bhattacharjee, R., Negi, A., Bhattacharya, B., Dey, T., Mitra, P., Preetam, S., Kumar, L., Kar, S., Das, S. S., & Iqbal, D. (2023). Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OpenNano, 100138. DOI: 10.1016/j.onano.2023.100138
    Bi, T., Fang, H., Jiang, J., He, X., Zhen, X., Yang, H., Wei, Z., & Jia, Z. (2019). Enhance supercapacitive performance of MnO2/3D carbon nanotubes-graphene as a binder-free electrode. Journal of Alloys and Compounds, 787, 759-766.
    Biesheuvel, P., & Van der Wal, A. (2010). Membrane capacitive deionization. Journal of Membrane Science, 346(2), 256-262.
    Biesheuvel, P., Zhao, R., Porada, S., & Van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of colloid and interface science, 360(1), 239-248.
    Biswas, R., & Sarkar, A. (2021). A two-step approach for arsenic removal by exploiting an autochthonous Delftia sp. BAs29 and neutralized red mud. Environmental Science and Pollution Research, 28, 40665-40677.
    Boonkaewwan, S., Sonthiphand, P., & Chotpantarat, S. (2021). Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: A case study in Rayong province, eastern Thailand. Environmental Geochemistry and Health, 43, 537-566.
    Borucka, M., Celiński, M., Sałasińska, K., & Gajek, A. (2020). Identification of volatile and semi-volatile organic compounds emitted during thermal degradation and combustion of triadimenol. Journal of Thermal Analysis and Calorimetry, 139, 1493-1506.
    Bouhadana, Y., Avraham, E., Soffer, A., & Aurbach, D. (2010). Several basic and practical aspects related to electrochemical deionization of water. AIChE journal, 56(3), 779-789.
    Bowen, H. J. M. (1979). Environmental chemistry of the elements: Academic Press.
    Brahma, S., Ramanujam, K., & Gardas, R. L. (2022). Nitrogen-doped high surface area porous carbon material derived from biomass and ionic liquid for high-performance supercapacitors. Industrial & Engineering Chemistry Research, 61(33), 12073-12082.
    Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. DOI: 10.1016/j.heliyon.2020.e04691
    Buat-Menard, P., Peterson, P., Havas, M., Steinnes, E., & Turner, D. (1987). Group report: arsenic. In (pp. 43-48): John Wiley and Sons, Ltd.: New York, NY, USA.
    Bukowsky, H., Uhlemann, E., & Steinborn, D. (1991). The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride. Hydrometallurgy, 27(3), 317-325.
    Bushra, R., Mohamad, S., Alias, Y., Jin, Y., & Ahmad, M. (2021). Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review. Microporous and Mesoporous Materials, 319, 111040. DOI: 10.1016/j.micromeso.2021.111040
    Cabeza, L. F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á. G., Fernádez, A. I., & Grágeda, M. (2015). Lithium in thermal energy storage: a state-of-the-art review. Renewable and Sustainable Energy Reviews, 42, 1106-1112.
    Can Sener, S. E., Thomas, V. M., Hogan, D. E., Maier, R. M., Carbajales-Dale, M., Barton, M. D., Karanfil, T., Crittenden, J. C., & Amy, G. L. (2021). Recovery of critical metals from aqueous sources. ACS Sustainable Chemistry & Engineering, 9(35), 11616-11634.
    Castro-Muñoz, R., Boczkaj, G., Gontarek, E., Cassano, A., & Fíla, V. (2020). Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends in Food Science & Technology, 95, 219-232.
    Cath, T. Y., Childress, A. E., & Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1-2), 70-87.
    Cha-umpong, W., Li, Q., Razmjou, A., & Chen, V. (2021). Concentrating brine for lithium recovery using GO composite pervaporation membranes. Desalination, 500, 114894. DOI: 10.1016/j.desal.2020.114894
    Chai, F., Zhang, R., Min, X., Yang, Z., Chai, L., & Zhao, F. (2022). Highly efficient removal of arsenic(III/V) from groundwater using nZVI functionalized cellulose nanocrystals fabricated via a bioinspired strategy. Science of The Total Environment, 842, 156937. DOI: 10.1016/j.scitotenv.2022.156937
    Chakraborti, D., Das, B., Rahman, M. M., Chowdhury, U. K., Biswas, B., Goswami, A. B., Nayak, B., Pal, A., Sengupta, M. K., & Ahamed, S. (2009). Status of groundwater arsenic contamination in the state of West Bengal, India: a 20‐year study report. Molecular nutrition & food research, 53(5), 542-551.
    Chan, S.-S., & Wu, J.-H. (2022). Municipal-to-industrial water reuse via multi-stage and multi-pass reverse osmosis systems: a step from water scarcity towards sustainable development. Water, 14(3), 362. DOI: 10.3390/w14030362
    Chand, R., Tuteja, S. K., & Neethirajan, S. (2019). Graphene-based biosensors in agro-defense: food safety and animal health diagnosis. In Handbook of Graphene, Volume 6: Biosensors and Advanced Sensors: John Wiley & Sons.
    Chang, C.-W., Ou, C.-H., Yu, C.-C., Lo, C.-W., Tsai, C.-Y., Cheng, P.-Y., Chen, Y.-T., Huang, H.-C., Wu, C.-C., & Li, C.-C. (2021a). Comparative analysis of patients with upper urinary tract urothelial carcinoma in black-foot disease endemic and non-endemic area. BMC cancer, 21(1), 1-9.
    Chang, L., Fei, Y., & Hu, Y. H. (2021b). Structurally and chemically engineered graphene for capacitive deionization. Journal of Materials Chemistry A, 9(3), 1429-1455.
    Chang, W.-T., Chen, P.-A., Chen, W.-R., Liu, S.-H., & Wang, H. P. (2022). Simultaneous capacitive deionisation and disinfection of saltwater by Ag@ C/rGO electrodes. Environmental Chemistry, 18(8), 352-359.
    Chang, W.-T., Chen, P.-A., Peng, C.-Y., Liu, S.-H., & Wang, H. P. (2023a). Capacitive deionization and disinfection of saltwater using nanostructured (Cu-Ag)@ C/rGO composite electrodes. Environmental Science: Water Research & Technology. DOI: 10.1039/D2EW00584K
    Chang, W. T., Chen, P.-A., Peng, C.-Y., Liu, S.-H., & Wang, H. P. (2023b). Capacitive deionization and disinfection of saltwater using nanostructured (Cu-Ag)@ C/rGO composite electrodes. Environmental Science: Water Research & Technology. DOI: 10.1039/D2EW00584K
    Chen, C.-W., Chen, P.-A., Wei, C.-J., Huang, H.-L., Jou, C.-J., Wei, Y.-L., & Wang, H. P. (2017). Lithium recovery with LiTi2O4 ion-sieves. Marine Pollution Bulletin, 124(2), 1106-1110.
    Chen, K.-Y., Shen, Y.-Y., Wang, D.-M., & Hou, C.-H. (2022a). Carbon nanotubes/activated carbon hybrid as a high-performance suspension electrode for the electrochemical desalination of wastewater. Desalination, 522, 115440. DOI: 10.1016/j.desal.2021.115440
    Chen, L., Yin, X., Zhu, L., & Qiu, Y. (2018a). Energy recovery and electrode regeneration under different charge/discharge conditions in membrane capacitive deionization. Desalination, 439, 93-101.
    Chen, N., Wang, D., Hu, J., Guan, L., & Lu, Z.-H. (2022b). Measuring energy gaps of organic semiconductors by electron energy loss spectroscopies. physica status solidi (b), 259(1), 2100459. DOI: 10.1002/pssb.202100459
    Chen, P.-A., Cheng, H.-C., & Wang, H. P. (2018b). Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water. Journal of cleaner Production, 174, 927-932.
    Chen, P.-A., Wang, H. P., Kuznetsov, A. M., Masliy, A. N., Liu, S., Chiang, C.-L., & Korshin, G. V. (2023). XANES/EXAFS and quantum chemical study of the speciation of arsenic in the condensate formed in landfill gas processing: Evidence of the dominance of As-S species. Journal of Hazardous Materials, 445, 130522. DOI: 10.1016/j.jhazmat.2022.130522
    Chen, T.-H., Yeh, K.-H., Lin, C.-F., Lee, M., & Hou, C.-H. (2022c). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resources, Conservation and Recycling, 177, 106012. DOI: 10.1016/j.resconrec.2021.106012
    Chen, W., Gong, M., Li, K., Xia, M., Chen, Z., Xiao, H., Fang, Y., Chen, Y., Yang, H., & Chen, H. (2020). Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Applied Energy, 278, 115730. DOI: 10.1016/j.apenergy.2020.115730
    Chen, W., Zhu, K., Cai, Y., Wang, Y., & Liu, Y. (2021). Distribution and ecological risk assessment of arsenic and some trace elements in soil of different land use types, Tianba Town, China. Environmental Technology & Innovation, 24, 102041. DOI: 10.1016/j.eti.2021.102041
    Chen, Y.-W., Chen, J.-F., Lin, C.-H., & Hou, C.-H. (2019a). Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water. Applied Energy, 252, 113417. DOI: 10.1016/j.apenergy.2019.113417
    Chen, Y., Liu, T., Zhang, L., & Yu, J. (2019b). N-doped graphene framework supported nickel cobalt oxide as supercapacitor electrode with enhanced performance. Applied Surface Science, 484, 135-143.
    Chen, Z., Xu, X., Liu, Y., Li, J., Wang, K., Ding, Z., Meng, F., Lu, T., & Pan, L. (2022d). Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure. Desalination, 528, 115616. DOI: 10.1016/j.desal.2022.115616
    Cheng, F., Bayat, H., Jena, U., & Brewer, C. E. (2020). Impact of feedstock composition on pyrolysis of low-cost, protein-and lignin-rich biomass: a review. Journal of Analytical and Applied Pyrolysis, 147, 104780. DOI: 10.1016/j.jaap.2020.104780
    Cheng, H.-C., Chen, P.-A., Peng, C.-Y., Liu, S.-H., & Wang, H. P. (2022). Sulfonated GO coated carbon electrodes with cation-selective functions for enhanced capacitive deionization of saltwater. Environmental Technology, 1-11.
    Chernyaev, A., Wilson, B. P., & Lundström, M. (2021). Study on valuable metal incorporation in the Fe-Al precipitate during neutralization of LIB leach solution. Scientific Reports, 11(1), 23283. DOI: 10.1016/j.cej.2020.126874
    Chiavola, A., Amato, E., Stoller, M., Chianese, A., & Boni, M. (2016). Application of iron based nanoparticles as adsorbents for arsenic removal from water. Chemical Engineering Transactions, 47, 325-330.
    Chong, L.-G., Chen, P.-A., Huang, J.-Y., Huang, H.-L., & Wang, H. P. (2018). Capacitive deionization of a RO brackish water by AC/graphene composite electrodes. Chemosphere, 191, 296-301.
    Choo, K. Y., Yoo, C. Y., Han, M. H., & Kim, D. K. (2017). Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization. Journal of Electroanalytical Chemistry, 806, 50-60.
    Christ, A., Regenauer-Lieb, K., & Chua, H. T. (2015). Boosted Multi-effect distillation for sensible low-grade heat sources: a comparison with feed pre-heating multi-effect distillation. Desalination, 366, 32-46.
    Christensen, T. H., Kjeldsen, P., Albrechtsen, H. J. r., Heron, G., Nielsen, P. H., Bjerg, P. L., & Holm, P. E. (1994). Attenuation of landfill leachate pollutants in aquifers. Critical reviews in environmental science and technology, 24(2), 119-202.
    Ciampi, P., Esposito, C., Bartsch, E., Alesi, E. J., Rehner, G., Morettin, P., Pellegrini, M., Olivieri, S., Ranaldo, M., & Liali, G. (2023). A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®). Environmental Research, 217, 114827. DOI: 10.1016/j.envres.2022.114827
    Clark, B., Gilles, G., & Tarpeh, W. A. (2022). Resin-mediated PH control of metal-loaded ligand exchangers for selective nitrogen recovery from wastewaters. ACS Applied Materials & Interfaces, 14(20), 22950-22964.
    Clemente, M. J., Serrano, S., Devesa, V., & Vélez, D. (2021). Arsenic speciation in cooked food and its bioaccessible fraction using X-ray absorption spectroscopy. Food Chemistry, 336, 127587. DOI: 10.1016/j.foodchem.2020.127587
    Cohen, I., Avraham, E., Bouhadana, Y., Soffer, A., & Aurbach, D. (2015). The effect of the flow-regime, reversal of polarization, and oxygen on the long term stability in capacitive de-ionization processes. Electrochimica Acta, 153, 106-114.
    Costa, J. M., da Costa, J. G. d. R., & de Almeida Neto, A. F. (2022). Techniques of nickel(II) removal from electroplating industry wastewater: overview and trends. Journal of Water Process Engineering, 46, 102593. DOI: 10.1016/j.jwpe.2022.102593
    Crebelli, R., & Leopardi, P. (2012). Long-term risks of metal contaminants in drinking water: a critical appraisal of guideline values for arsenic and vanadium. Annali dell'Istituto superiore di sanità, 48, 354-361.
    Cuong, D. V., Matsagar, B. M., Lee, M., Hossain, M. S. A., Yamauchi, Y., Vithanage, M., Sarkar, B., Ok, Y. S., Wu, K. C.-W., & Hou, C.-H. (2021). A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews, 145, 111029. DOI: 10.1016/j.rser.2021.111029
    Da Silva, L. M., Cesar, R., Moreira, C. M., Santos, J. H., De Souza, L. G., Pires, B. M., Vicentini, R., Nunes, W., & Zanin, H. (2020). Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Materials, 27, 555-590.
    Dahiya, S., & Mishra, B. K. (2020). Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: a review on recent progress. Separation and Purification Technology, 240, 116660. DOI: 10.1016/j.seppur.2020.116660
    Dasan, Y., Bhat, A., & Khan, I. (2020). Nanocellulose and nanochitin for water remediation by adsorption of heavy metals. Nanomaterials for water remediation, 2, 1-18.
    Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: a review on biotreatment. Journal of Hazardous Materials, 163(1), 1-11.
    Dastgheib, S. A., & Salih, H. H. (2019). Treatment of highly saline brines by supercritical precipitation followed by supercritical membrane separation. Industrial & Engineering Chemistry Research, 58(8), 3370-3376.
    Di Martino, M., Avraamidou, S., & Pistikopoulos, E. N. (2022). A neural network based superstructure optimization approach to reverse osmosis desalination plants. Membranes, 12(2), 199. DOI: 10.3390/membranes12020199
    Ding, Y., Dai, L., Wang, R., Wang, H., Zhang, H., Jiang, W., Tang, J., & Zang, S.-Q. (2021). Bio-inspired Mn3O4@N, P-doped carbon cathode for 2.6 V flexible aqueous asymmetric supercapacitors. Chemical Engineering Journal, 407, 126874. DOI: 10.1016/j.cej.2020.126874
    Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C.-c., & Ekberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: a review. Resources, Conservation and Recycling, 141, 284-298.
    Długołecki, P., & van der Wal, A. (2013). Energy recovery in membrane capacitive deionization. Environmental science & technology, 47(9), 4904-4910.
    Do Thi, H. T., Pasztor, T., Fozer, D., Manenti, F., & Toth, A. J. (2021). Comparison of desalination technologies using renewable energy sources with life cycle, PESTLE, and multi-criteria decision analyses. Water, 13(21), 3023. DOI: 10.3390/w13213023
    Dodd, M. C., Vu, N. D., Ammann, A., Le, V. C., Kissner, R., Pham, H. V., Cao, T. H., Berg, M., & Von Gunten, U. (2006). Kinetics and mechanistic aspects of As (III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. Environmental science & technology, 40(10), 3285-3292.
    Dong, K., Xie, F., Wang, W., Chang, Y., Lu, D., Gu, X., & Chen, C. (2021). The detoxification and utilization of cyanide tailings: a critical review. Journal of cleaner Production, 302, 126946. DOI: 10.1016/j.jclepro.2021.126946
    Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in sustainable recycling technology of spent lithium‐ion batteries. Energy & Environmental Materials, 5(4), 1012-1036.
    Dutta, S., Huang, S.-Y., Chen, C., Chen, J. E., Alothman, Z. A., Yamauchi, Y., Hou, C.-H., & Wu, K. C.-W. (2016). Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water. ACS Sustainable Chemistry & Engineering, 4(4), 1885-1893.
    Egbosiuba, T. C., Egwunyenga, M. C., Tijani, J. O., Mustapha, S., Abdulkareem, A. S., Kovo, A. S., Krikstolaityte, V., Veksha, A., Wagner, M., & Lisak, G. (2022). Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. Journal of Hazardous Materials, 423, 126993. DOI: 10.1016/j.jhazmat.2021.126993
    Eguchi, T., Tashima, D., Fukuma, M., & Kumagai, S. (2020). Activated carbon derived from Japanese distilled liquor waste: Application as the electrode active material of electric double-layer capacitors. Journal of cleaner Production, 259, 120822. DOI: 10.1016/j.jclepro.2020.120822
    Elfeghe, S., Anwar, S., & Zhang, Y. (2022). Adsorption and removal studies of cadmium ion onto sulphonic/phosphonic acid functionalization resins. The Canadian Journal of Chemical Engineering, 100(10), 3006-3014.
    Elisadiki, J. (2020). Mesoporous carbon materials derived from artocarpus heterophyllus for water desalination and defluoridation using capacitive deionization.
    Elisadiki, J., Kibona, T. E., Machunda, R. L., Saleem, M. W., Kim, W.-S., & Jande, Y. A. (2020). Biomass-based carbon electrode materials for capacitive deionization: a review. Biomass conversion and biorefinery, 10, 1327-1356.
    Elmouwahidi, A., Bailón-García, E., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2017). Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 229, 219-228.
    Emmanuel, B., Makhatha, E., & Nheta, W. (2019). A Review of Lanthanum Nanoparticles Impregnated Compound Arsenic Fixation Behaviour in Copper Aqueous Solution. Energy Procedia, 157, 966-971.
    Espenscheid, M. W., Ghatak-Roy, A. R., Moore, R. B., Penner, R. M., Szentirmay, M. N., & Martin, C. R. (1986). Sensors from polymer modified electrodes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(4), 1051-1070.
    Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
    Falahieh, M. M., Bonyadi, M., & Lashanizadegan, A. (2021). A new hybrid desalination method based on the CO2 gas hydrate and capacitive deionization processes. Desalination, 502, 114932. DOI: 10.1016/j.desal.2021.114932
    Fan, C.-S., Tseng, S.-C., Li, K.-C., & Hou, C.-H. (2016). Electro-removal of arsenic (III) and arsenic (V) from aqueous solutions by capacitive deionization. Journal of hazardous materials, 312, 208-215.
    Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., & Wu, F. (2020). Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chemical Reviews, 120(14), 7020-7063.
    Fang, S., Bresser, D., & Passerini, S. (2022). Transition metal oxide anodes for electrochemical energy storage in lithium‐and sodium‐ion batteries. Transition Metal Oxides for Electrochemical Energy Storage, 55-99.
    Faniyi, I., Fasakin, O., Olofinjana, B., Adekunle, A., Oluwasusi, T., Eleruja, M., & Ajayi, E. (2019). The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. SN Applied Sciences, 1(10), 1-7.
    Faraji, S., & Ani, F. N. (2015). The development supercapacitor from activated carbon by electroless plating-a review. Renewable and Sustainable Energy Reviews, 42, 823-834.
    Fatima, N., Zhang, Q., Chen, R., Yan, D., Zhou, Q., Lu, X., & Xin, J. (2020). Adsorption thermodynamics and kinetics of resin for metal impurities in Bis (2-hydroxyethyl) terephthalate. Polymers, 12(12), 2866. DOI: 10.3390/polym12122866
    Fei, Y., & Hu, Y. H. (2022). Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. Journal of Materials Chemistry A, 10(3), 1047-1085.
    Feldmann, J. (2003). Volatilization of metals from a landfill site: generation and immobilization of volatile species of tin, antimony, bismuth, mercury, arsenic, and tellurium on a municipal waste deposit in Delta, British Columbia. In: ACS Publications. DOI: 10.1021/bk-2003-0835.ch010
    Feng, J., Xiong, S., Ren, L., & Wang, Y. (2022). Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water. Chinese Journal of Chemical Engineering, 45, 15-21.
    Feng, Q., Kanoh, H., & Ooi, K. (1999). Manganese oxide porous crystals. Journal of Materials Chemistry, 9(2), 319-333. DOI: 10.1039/A805369c
    Fleischmann, S., Zhang, Y., Wang, X., Cummings, P. T., Wu, J., Simon, P., Gogotsi, Y., Presser, V., & Augustyn, V. (2022). Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nature Energy, 7(3), 222-228.
    Flora, S. J. (2015). Arsenic: chemistry, occurrence, and exposure. In Handbook of arsenic toxicology (pp. 1-49): Elsevier.
    Folaranmi, G., Bechelany, M., Sistat, P., Cretin, M., & Zaviska, F. (2020). Towards electrochemical water desalination techniques: a review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization. Membranes, 10(5), 96. DOI: 10.3390/membranes10050096
    Frikha, K., Limousy, L., Pons Claret, J., Vaulot, C., Pérez, K. F., Garcia, B. C., & Bennici, S. (2022). Potential valorization of waste tires as activated carbon-based adsorbent for organic contaminants removal. Materials, 15(3), 1099. DOI: 10.3390/ma15031099
    Gan, L., Wu, Y., Song, H., Zhang, S., Lu, C., Yang, S., Wang, Z., Jiang, B., Wang, C., & Li, A. (2019). Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Separation and Purification Technology, 212, 728-736.
    Gao, D., Guo, Y., Yu, X., Wang, S., & Deng, T. (2018). Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths. Journal of Chemical Engineering of Japan, 49(2), 104-110.
    Gao, J.-m., Du, Z., Zhao, Q., Guo, Y., & Cheng, F. (2021). Enhanced Li+ adsorption by magnetically recyclable iron-doped lithium manganese oxide ion-sieve: Synthesis, characterization, adsorption kinetics and isotherm. Journal of Materials Research and Technology, 13, 228-240.
    Gao, X., Omosebi, A., Landon, J., & Liu, K. (2015a). Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environmental science & technology, 49(18), 10920-10926.
    Gao, X., Omosebi, A., Landon, J., & Liu, K. (2015b). Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy & Environmental Science, 8(3), 897-909.
    García-Quismondo, E., Santos, C., Palma, J., & Anderson, M. A. (2016). On the challenge of developing wastewater treatment processes: capacitive deionization. Desalination and Water Treatment, 57(5), 2315-2324.
    García-Rodríguez, L., & Delgado-Torres, A. M. (2022). Renewable energy-driven desalination: new trends and future prospects of Small Capacity Systems. Processes, 10(4), 745. DOI: 10.1016/j.surfin.2022.101744
    Garelick, H., Dybowska, A., Valsami-Jones, E., & Priest, N. (2005). Remediation technologies for arsenic contaminated drinking waters (9 pp). Journal of Soils and Sediments, 5, 182-190.
    Garrido, S., Avilés, M., Ramírez, A., Calderón, C., Ramírez-Orozco, A., Nieto, A., Shelp, G., Seed, L., Cebrian, M., & Vera, E. (2009). Arsenic removal from water of Huautla, Morelos, Mexico using capacitive deionization. Natural arsenic in Groundwaters. of Latin. America; Taylor & Francis Group: London, UK, 665-676.
    Gault, B., & Poplawsky, J. D. (2021). Correlating advanced microscopies reveals atomic-scale mechanisms limiting lithium-ion battery lifetime. Nature Communications, 12(1), 1-3.
    Ge, J., Xiao, Y., Kuang, J., & Liu, X. (2022). Research progress of chlorination roasting of heavy metals in solid waste. Surfaces and Interfaces, 101744. DOI: 10.1016/j.surfin.2022.101744
    Genchi, G., Lauria, G., Catalano, A., Carocci, A., & Sinicropi, M. S. (2022). Arsenic: a review on a great health issue worldwide. Applied Sciences, 12(12), 6184. DOI: 10.3390/app12126184
    Geuli, O., Hao, Q., & Mandler, D. (2019). One-step fabrication of NiOx-decorated carbon nanotubes-NiCo2O4 as an advanced electroactive composite for supercapacitors. Electrochimica Acta, 318, 51-60.
    Ghasemi, M., Sedighi, M., & Usefi, M. M. B. (2022). A comprehensive review on membranes in microbial desalination cells; processes, utilization, and challenges. International Journal of Energy Research, 46(11), 14716-14739.
    Ghazi, Z. M., Rizvi, S. W. F., Shahid, W. M., Abdulhameed, A. M., Saleem, H., & Zaidi, S. J. (2022). An overview of water desalination systems integrated with renewable energy sources. Desalination, 542, 116063. DOI: 10.1016/j.chemosphere.2021.132386
    Ghodrat, M., Rhamdhani, M. A., Brooks, G., Masood, S., & Corder, G. (2016). Techno economic analysis of electronic waste processing through black copper smelting route. Journal of cleaner Production, 126, 178-190.
    Ghosh, S. K. (2020). Diversity in the family of manganese oxides at the nanoscale: from fundamentals to applications. ACS omega, 5(40), 25493-25504.
    Glenn, E. P., Brown, J. J., & O’Leary, J. W. (1998). Irrigating crops with seawater. Scientific American, 279(2), 76-81.
    Gobert, T., Gautier, A., Connan, S., Rouget, M.-L., Thibaut, T., Stiger-Pouvreau, V., & Waeles, M. (2022). Trace metal content from holopelagic Sargassum spp. sampled in the tropical North Atlantic Ocean: Emphasis on spatial variation of arsenic and phosphorus. Chemosphere, 308, 136186.
    Goh, P., Wong, K., & Ismail, A. (2022). Membrane technology: A versatile tool for saline wastewater treatment and resource recovery. Desalination, 521, 115377.
    Gomez-Delgado, E., Nunell, G. V., Cukierman, A. L., & Bonelli, P. R. (2022). Influence of the carbonization atmosphere on the development of highly microporous adsorbents tailored to CO2 capture. Journal of the Energy Institute, 102, 184-189.
    Gopalan, J., Buthiyappan, A., & Raman, A. A. A. (2022). Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: a review. Journal of Industrial and Engineering Chemistry. DOI: 10.1016/j.jiec.2022.06.026.
    Gorre, J., Ruoss, F., Karjunen, H., Schaffert, J., & Tynjälä, T. (2020). Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation. Applied Energy, 257, 113967.
    Guan, X., Du, J., Meng, X., Sun, Y., Sun, B., & Hu, Q. (2012). Application of titanium dioxide in arsenic removal from water: a review. Journal of Hazardous Materials, 215, 1-16.
    Gude, V. G. (2015). Energy storage for desalination processes powered by renewable energy and waste heat sources. Applied Energy, 137, 877-898.
    Gude, V. G. (2016). Desalination and sustainability–an appraisal and current perspective. Water research, 89, 87-106.
    Gujjala, L. K. S., Dutta, D., Sharma, P., Kundu, D., Vo, D.-V. N., & Kumar, S. (2022). A state-of-the-art review on microbial desalination cells. Chemosphere, 288, 132386. DOI: 10.1016/j.chemosphere.2021.132386
    Guo, J., Wang, Y., Cai, Y., Zhang, H., Li, Y., & Liu, D. (2022). Ni-doping Cu-Prussian blue analogue/carbon nanotubes composite (Ni-CuPBA/CNTs) with 3D electronic channel-rich network structure for capacitive deionization. Desalination, 528, 115622. DOI: 10.1016/j.desal.2022.115622
    Guo, Q., Planer-Friedrich, B., Luo, L., Liu, M., Wu, G., Li, Y., & Zhao, Q. (2020). Speciation of antimony in representative sulfidic hot springs in the YST Geothermal Province (China) and its immobilization by spring sediments. Environmental Pollution, 266, 115221. DOI: 10.1016/j.envpol.2020.115221
    Guyes, E. N., Malka, T., & Suss, M. E. (2019). Enhancing the ion-size-based selectivity of capacitive deionization electrodes. Environmental science & technology, 53(14), 8447-8454.
    Haferkamp, H., Niemeyer, M., Boehm, R., Holzkamp, U., Jaschik, C., & Kaese, V. (2000). Development, processing and applications range of magnesium lithium alloys. Paper presented at the Materials Science Forum. DOI: 10.4028/www.scientific.net/MSF.350-351.31
    Haldar, D., Duarah, P., & Purkait, M. K. (2020). MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: a review. Chemosphere, 251, 126388. DOI: 10.1016/j.chemosphere.2020.126388
    Han, B., Cheng, G., Wang, Y., & Wang, X. (2019). Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chemical Engineering Journal, 360, 364-384.
    Han, M. H., Gonzalo, E., Singh, G., & Rojo, T. (2015). A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy & Environmental Science, 8(1), 81-102.
    HAN, W.-w., YANG, H.-y., & TONG, L.-l. (2022). Cyanide removal for ultrafine gold cyanide residues by chemical oxidation methods. Transactions of Nonferrous Metals Society of China, 32(12), 4129-4138.
    Hao, M., Zeng, W., Li, Y.-Q., & Wang, Z.-C. (2021). Three-dimensional graphene and its composite for gas sensors. Rare Metals, 40, 1494-1514.
    Harpprecht, C., van Oers, L., Northey, S. A., Yang, Y., & Steubing, B. (2021). Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future. Journal of Industrial Ecology, 25(6), 1543-1559.
    Hashmi, A., Nayak, V., Singh, K. R., Jain, B., Baid, M., Alexis, F., & Singh, A. K. (2022). Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. Materials Today Advances, 13, 100208. DOI: 10.1016/j.mtadv.2022.100208
    Hawks, S. A., Ramachandran, A., Porada, S., Campbell, P. G., Suss, M. E., Biesheuvel, P., Santiago, J. G., & Stadermann, M. (2019). Performance metrics for the objective assessment of capacitive deionization systems. Water research, 152, 126-137.
    He, D., Wong, C. E., Tang, W., Kovalsky, P., & Waite, T. D. (2016). Faradaic reactions in water desalination by batch-mode capacitive deionization. Environmental Science & Technology Letters, 3(5), 222-226.
    He, F., Peng, Y., Wang, F., Dong, Y., Chen, K., & Lu, S. (2022). Inhibition of PCDD/Fs in a full-scale hazardous waste incinerator by the quench tower coupled with inhibitors injection. Environmental Pollution, 314, 120261. DOI: 10.1016/j.envpol.2022.120261
    Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, 393-415.
    Helz, G., & Tossell, J. (2008). Thermodynamic model for arsenic speciation in sulfidic waters: a novel use of ab initio computations. Geochimica et Cosmochimica Acta, 72(18), 4457-4468.
    Herath, I., Vithanage, M., Seneweera, S., & Bundschuh, J. (2018). Thiolated arsenic in natural systems: What is current, what is new and what needs to be known. Environment International, 115, 370-386.
    Hill, T. L. (1952). Theory of physical adsorption. Advances in Catalysis, 4, 211-258.
    Hong, J., Wu, T., Wu, H., Zeng, B., Zeng, S., Chen, T., Wang, X., Lu, Z., Yuan, C., & Balaji, K. (2021). Nanohybrid silver nanoparticles@halloysite nanotubes coated with polyphosphazene for effectively enhancing the fire safety of epoxy resin. Chemical Engineering Journal, 407, 127087. DOI: 10.1016/j.cej.2020.127087
    Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental science & technology, 50(8), 4178-4185.
    Hossain, S. M., Yu, H., Choo, Y., Naidu, G., Han, D. S., & Shon, H. K. (2023). ZiF-8 induced carbon electrodes for selective lithium recovery from aqueous feed water by employing capacitive deionization system. Desalination, 546, 116201. DOI: 10.1016/j.desal.2022.116201
    Hou, C.-C., Ma, C., Zhang, S.-N., Wang, L.-Y., Wang, K.-X., & Chen, J.-S. (2022). Polymeric schiff base with thiophene rings for sodium-ion batteries. ACS Applied Energy Materials, 5(11), 13802-13807.
    Hou, C.-H., & Huang, C.-Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129.
    Hsiung, T.-L., Wei, L.-W., Huang, H.-L., Tuan, Y.-J., & Wang, H. P. (2021). In situ X-ray absorption spectroscopic studies of photocatalytic oxidation of As(III) to less toxic As(V) by TiO2 nanotubes. Journal of Synchrotron Radiation, 28(3), 849-853.
    Hsiung, T. L., Wang, H. P., & Wang, H.-C. (2006). XANES studies of photocatalytic active species in nano TiO2–SiO2. Radiation Physics and Chemistry, 75(11), 2042-2045.
    Hu, C., Liu, H., Chen, G., Jefferson, W. A., & Qu, J. (2012a). As(III) oxidation by active chlorine and subsequent removal of As(V) by Al13 polymer coagulation using a novel dual function reagent. Environmental science & technology, 46(12), 6776-6782.
    Hu, S., Lu, J., & Jing, C. (2012b). A novel colorimetric method for field arsenic speciation analysis. Journal of Environmental Sciences, 24(7), 1341-1346.
    Huang, C.-H., Wang, H. P., Chang, J.-E., & Eyring, E. M. (2009a). Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chemical communications(31), 4663-4665.
    Huang, J.-H., Ilgen, G., Vogel, D., Michalzik, B., Hantsch, S., Tennhardt, L., & Bilitewski, B. (2009b). Emissions of inorganic and organic arsenic compounds via the leachate pathway from pretreated municipal waste materials: a landfill reactor study. Environmental science & technology, 43(18), 7092-7097.
    Huang, W.-q., Liu, G.-h., Liu, P., Qi, T.-g., Li, X.-b., Peng, Z.-h., & Zhou, Q.-s. (2019). Equilibrium concentration of lithium ion in sodium aluminate solution. Journal of Central South University, 26(2), 304-311.
    Huang, W., Zhang, Y., Bao, S., Cruz, R., & Song, S. (2014). Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination, 340, 67-72.
    Huang, W., Zhang, Y., Bao, S., & Song, S. (2013). Desalination by capacitive deionization with carbon-based materials as electrode: a review. Surface Review and Letters, 20(06), 1330003. DOI: 10.1142/S0218625X13300050
    Huang, Y., Tang, Z., Zhou, S., Wang, H., Tang, Y., Sun, D., & Wang, H. (2022). Renewable waste biomass-derived carbon materials for energy storage. Journal of Physics D: Applied Physics, 55(31), 313002. DOI: 10.1088/1361-6463/ac6633
    Huang, Z., Lu, L., Cai, Z., & Ren, Z. J. (2016). Individual and competitive removal of heavy metals using capacitive deionization. Journal of Hazardous Materials, 302, 323-331.
    Hubau, A., & Bryan, C. G. (2022). Metal Recovery from E-wastes. In Biomining Technologies: Extracting and Recovering Metals from Ores and Wastes (pp. 239-259): Springer.
    Hug, S. J., Winkel, L. H., Voegelin, A., Berg, M., & Johnson, A. C. (2020). Arsenic and other geogenic contaminants in groundwater-a global challenge. Chimia, 74(7-8), 524-524.
    Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology letters, 133(1), 1-16.
    Hung, W.-C., Horng, R. S., & Tsai, C.-H. (2022). Effects of process conditions on simultaneous removal and recovery of boron from boron-laden wastewater using improved bipolar membrane electrodialysis (BMED). Journal of Water Process Engineering, 47, 102650. DOI: 10.1016/j.jwpe.2022.102650
    Huo, S., Zhao, Y., Zong, M., Liang, B., Zhang, X., Khan, I. U., Song, X., & Li, K. (2020). Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering. Journal of Materials Chemistry A, 8(5), 2505-2517.
    Hutchinson, T. C., & Meema, K. (1987). Lead, mercury, cadmium, and arsenic in the environment.
    Huyskens, C., Helsen, J., Groot, W. J., & de Haan, A. B. (2015). Cost evaluation of large-scale membrane capacitive deionization for biomass hydrolysate desalination. Separation and Purification Technology, 146, 294-300.
    Ibrar, I., Yadav, S., Naji, O., Alanezi, A. A., Ghaffour, N., Déon, S., Subbiah, S., & Altaee, A. (2022). Development in forward osmosis-membrane distillation hybrid system for wastewater treatment. Separation and Purification Technology, 120498. DOI: 10.1016/j.seppur.2022.120498
    Iftekhar, S., Heidari, G., Amanat, N., Zare, E. N., Asif, M. B., Hassanpour, M., Lehto, V. P., & Sillanpaa, M. (2022). Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: a review. Environmental Chemistry Letters, 20(6), 3697-3746.
    Ilyas, S., Srivastava, R. R., & Kim, H. (2021). O2-enriched microbial activity with pH-sensitive solvo-chemical and electro-chlorination strategy to reclaim critical metals from the hazardous waste printed circuit boards. Journal of Hazardous Materials, 416, 125769. DOI: 10.1016/j.jhazmat.2021.125769
    Intrakamhaeng, V., Clavier, K. A., Liu, Y., & Townsend, T. G. (2020). Antimony mobility from E-waste plastic in simulated municipal solid waste landfills. Chemosphere, 241, 125042. DOI: 10.1016/j.chemosphere.2019.125042
    Jacukowicz-Sobala, I., Ciechanowska, A., Kociołek-Balawejder, E., Gibas, A., & Zakrzewski, A. (2022). Photocatalytically-assisted oxidative adsorption of As (III) using sustainable multifunctional composite material-Cu2O doped anion exchanger. Journal of Hazardous Materials, 431, 128529. DOI: 10.1016/j.jhazmat.2022.128529
    Jakob, R., Roth, A., Haas, K., Krupp, E. M., Raab, A., Smichowski, P., Gómez, D., & Feldmann, J. (2010). Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM 10): evidence of the widespread phenomena of biovolatilization of arsenic. Journal of Environmental Monitoring, 12(2), 409-416.
    Jang, Y., Somanna, Y., & Kim, H. (2016). Source, distribution, toxicity and remediation of arsenic in the environment-a review. Int. J. Appl. Environ. Sci, 11(2), 559-581.
    Jedla, M. R., Koneru, B., Franco, A., Rangappa, D., & Banerjee, P. (2022). Recent developments in nanomaterials based adsorbents for water purification techniques. Biointerface Res. Appl. Chem, 12, 5821-5835.
    Jeon, S.-i., Kim, N., Jo, K., Ahn, J., Joo, H., Lee, C., Kim, C., & Yoon, J. (2022). Improvement in the desalination performance of membrane capacitive deionization with a bipolar electrode via an energy recovery process. Chemical Engineering Journal, 439, 135603. DOI: 10.1016/j.cej.2022.135603
    Jeon, S.-i., Park, H.-r., Yeo, J.-g., Yang, S., Cho, C. H., Han, M. H., & Kim, D. K. (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6(5), 1471-1475.
    Jeon, S.-i., Yeo, J.-g., Yang, S., Choi, J., & Kim, D. K. (2014). Ion storage and energy recovery of a flow-electrode capacitive deionization process. Journal of Materials Chemistry A, 2(18), 6378-6383.
    Ji, Y., Mestrot, A., Schulin, R., & Tandy, S. (2018). Uptake and transformation of methylated and inorganic antimony in plants. Frontiers in plant science, 9, 140.
    Jiang, C., Yakaboylu, G. A., Yumak, T., Zondlo, J. W., Sabolsky, E. M., & Wang, J. (2020). Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renewable Energy, 155, 38-52.
    Jiang, Q., He, Y., Wu, Y., Dian, B., Zhang, J., Li, T., & Jiang, M. (2022). Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. Environmental Pollution, 120094.
    Jiang, Y., & Liu, J. (2019). Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2(1), 30-37.
    Järup, L. (2003). Hazards of heavy metal contamination. British medical bulletin, 68(1), 167-182.
    Joshi, B., Samuel, E., Kim, Y. i., Yarin, A. L., Swihart, M. T., & Yoon, S. S. (2021). Electrostatically sprayed nanostructured electrodes for energy conversion and storage devices. Advanced Functional Materials, 31(14), 2008181. DOI: 10.1002/adfm.202008181
    Kamal, M. Z. U., & Miah, M. Y. (2021). Arsenic speciation techniques in soil water and plant: an overview. Arsenic Monitoring, Removal and Remediation.
    Kang, H.-Y., & Wang, H. P. (2013). Preparation of Magnetic Recoverable Nanosize Cu-Fe2O3/Fe Photocatalysts. Environmental science & technology, 47(13), 7380-7387.
    Kang, J., Kim, T., Shin, H., Lee, J., Ha, J.-I., & Yoon, J. (2016). Direct energy recovery system for membrane capacitive deionization. Desalination, 398, 144-150.
    Kar, P. (2019). Conjugated Polymer Nanocomposites. In Advances in Nanostructured Composites (pp. 48-96): CRC Press.
    Katiyar, R., Banerjee, S., & Arora, A. (2021). Recent advances in the integrated biorefinery concept for the valorization of algal biomass through sustainable routes. Biofuels, Bioproducts and Biorefining, 15(3), 879-898.
    Keller, N. S., Stefánsson, A., & Sigfússon, B. (2014). Arsenic speciation in natural sulfidic geothermal waters. Geochimica et Cosmochimica Acta, 142, 15-26.
    Kenyon, E. M., & Hughes, M. F. (2001). A concise review of the toxicity and carcinogenicity of dimethylarsinic acid. Toxicology, 160(1-3), 227-236.
    Khan, J., Dwivedi, H., Giri, A., Aggrawal, R., Tiwari, R., & Giri, D. D. (2023). Arsenic contamination in water, health effects and phytoremediation. In Metals in Water (pp. 407-429): Elsevier.
    Khanikar, L., & Ahmaruzzaman, M. (2023). Bioremediation of arsenic A sustainable approach in managing arsenic contamination. In Bioremediation of Toxic Metal (loid) s (pp. 185-203): CRC Press.
    Khayyam, H., Jazar, R. N., Nunna, S., Golkarnarenji, G., Badii, K., Fakhrhoseini, S. M., Kumar, S., & Naebe, M. (2020). PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling. Progress in Materials Science, 107, 100575. DOI: 10.1016/j.pmatsci.2019.100575
    Khoiruddin, K., Wardani, A. K., Aryanti, P. T., & Wenten, I. (2022). Polymeric membranes in electrodialysis, electrodialysis reversal, and capacitive deionization technologies. Advancement in Polymer-Based Membranes for Water Remediation, 541-567.
    Kick, M., Scheurer, C., & Oberhofer, H. (2020). Formation and stability of small polarons at the lithium-terminated Li4Ti5O12 (LTO)(111) surface. The Journal of Chemical Physics, 153(14), 144701. DOI: 10.1063/5.0021443
    Kim, J.-S., & Choi, J.-H. (2010). Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. Journal of Membrane Science, 355(1-2), 85-90.
    Kim, J., Park, K., Yang, D. R., & Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Applied Energy, 254, 113652. DOI: 10.1016/j.apenergy.2019.113652
    Kim, J., Yoon, S., Choi, M., Min, K. J., Park, K. Y., Chon, K., & Bae, S. (2022). Metal ion recovery from electrodialysis-concentrated plating wastewater via pilot-scale sequential electrowinning/chemical precipitation. Journal of cleaner Production, 330, 129879. DOI: 10.1016/j.jclepro.2021.129879
    Kim, K.-H., Choi, Y., Jeon, E., & Sunwoo, Y. (2005). Characterization of malodorous sulfur compounds in landfill gas. Atmospheric Environment, 39(6), 1103-1112.
    Kim, K. S., & Park, Y. J. (2012). Catalytic properties of Co 3 O 4 nanoparticles for rechargeable Li/air batteries. Nanoscale research letters, 7, 1-6.
    Kim, M., Lim, H., Xu, X., Hossain, M. S. A., Na, J., Awaludin, N. N., Shah, J., Shrestha, L. K., Ariga, K., & Nanjundan, A. K. (2021). Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials, 312, 110757. DOI: 10.1016/j.micromeso.2020.110757
    Kim, T.-K., Kim, T., Jo, A., Park, S., Choi, K., & Zoh, K.-D. (2018). Degradation mechanism of cyanide in water using a UV-LED/H2O2/Cu2+ system. Chemosphere, 208, 441-449.
    Ko, J. S., Sassin, M. B., Parker, J. F., Rolison, D. R., & Long, J. W. (2018). Combining battery-like and pseudocapacitive charge storage in 3D MnO x@ carbon electrode architectures for zinc-ion cells. Sustainable Energy & Fuels, 2(3), 626-636.
    Kobina Sam, D., Kobina Sam, E., & Lv, X. (2020). Application of biomass‐derived nitrogen‐doped carbon aerogels in electrocatalysis and supercapacitors. ChemElectroChem, 7(18), 3695-3712.
    Kong, W., Ge, X., Zhang, Q., Wang, Y., Wang, Y., Lu, J., Zhang, M., Kong, D., & Feng, Y. (2022). Ultrahigh Content Boron and Nitrogen Codoped Hierarchically Porous Carbon Obtained from Biomass Byproduct Okara for Capacitive Deionization. ACS omega. DOI: 10.1021/acsomega.2c06449
    Kong, W., Wang, G., Zhang, M., Duan, X., Hu, J., & Duan, X. (2019). Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 459, 1-9.
    Koul, B., Yadav, D., Singh, S., Kumar, M., & Song, M. (2022a). Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water, 14(21), 3542. DOI: 10.3390/w14213542
    Koul, B., Yakoob, M., & Shah, M. P. (2022b). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. DOI: 10.1016/j.envres.2021.112285 DOI: 10.3390/w14213542
    Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite material recycling technology—State-of-the-art and sustainable development for the 2020s. Journal of Composites Science, 5(1), 28. DOI: 10.3390/jcs5010028
    Krishna, S. (2022). A review on bioflocculation using microalgae for nutrient removal from wastewater. Sustainability, Agri, Food and Environmental Research, 10. DOI: 10.1016/j.eti.2021.101525
    Krishnan, S., Zulkapli, N. S., Kamyab, H., Taib, S. M., Din, M. F. B. M., Abd Majid, Z., Chaiprapat, S., Kenzo, I., Ichikawa, Y., & Nasrullah, M. (2021). Current technologies for recovery of metals from industrial wastes: an overview. Environmental Technology & Innovation, 22, 101525. DOI: 10.7770/safer-V10N1-art2516
    Kumar, A., Rathore, H. K., Sarkar, D., & Shukla, A. (2021). Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances, e2100187. DOI: 10.1002/elsa.202100187
    Kumar, C. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V., Kumar, T. A., Rout, P. K., Chanotiya, C., & Pakhale, V. D. (2023). Solar energy: a promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55, 102905. DOI: 10.1016/j.seta.2022.102905
    Kumari, R., & Samadder, S. R. (2022). A critical review of the pre-processing and metals recovery methods from e-wastes. Journal of environmental Management, 320, 115887. DOI: 10.1016/j.jenvman.2022.115887
    Lado, J. J., Zornitta, R. L., Calvi, F. A., Tejedor-Tejedor, M. I., Anderson, M. A., & Ruotolo, L. A. (2016). Study of sugar cane bagasse fly ash as electrode material for capacitive deionization. Journal of Analytical and Applied Pyrolysis, 120, 389-398.
    Latini, D., Vaccari, M., Lagnoni, M., Orefice, M., Mathieux, F., Huisman, J., Tognotti, L., & Bertei, A. (2022). A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. Journal of Power Sources, 546, 231979. DOI: 10.1016/j.jpowsour.2022.231979
    Lawagon, C. P., Nisola, G. M., Mun, J., Tron, A., Torrejos, R. E. C., Seo, J. G., Kim, H., & Chung, W.-J. (2016). Adsorptive Li+ mining from liquid resources by H2TiO3: Equilibrium, kinetics, thermodynamics, and mechanisms. Journal of Industrial and Engineering Chemistry, 35, 347-356.
    Le Pape, P., Blanchard, M., Brest, J., Boulliard, J.-C., Ikogou, M., Stetten, L., Wang, S., Landrot, G., & Morin, G. (2017). Arsenic incorporation in pyrite at ambient temperature at both tetrahedral S-I and octahedral FeII sites: Evidence from EXAFS-DFT analysis. Environmental science & technology, 51(1), 150-158.
    Lebrouhi, B. E., Baghi, S., Lamrani, B., Schall, E., & Kousksou, T. (2022). Critical materials for electrical energy storage: Li-ion batteries. Journal of Energy Storage, 55, 105471. DOI: 10.1016/j.est.2022.105471
    Lee, S. M., Lee, S. H., Park, S., Yoon, S.-H., & Jung, D.-H. (2022a). Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization. Desalination, 539, 115901. DOI: 10.1016/j.desal.2022.115901
    Lee, S. W., Kim, J., Chen, S., Hammond, P. T., & Shao-Horn, Y. (2010). Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS nano, 4(7), 3889-3896.
    Lee, Y.-J., Lin, B.-L., Xue, M., & Tsunemi, K. (2022b). Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review. Bioresource technology, 127927. DOI: 10.1016/j.biortech.2022.127927
    Leong, Z. Y., & Yang, H. Y. (2020). Capacitive deionization of divalent cations for water softening using functionalized carbon electrodes. ACS omega, 5(5), 2097-2106.
    Li, G., & Pickup, P. G. (1999). Ion transport in a chemically prepared polypyrrole/poly (styrene-4-sulfonate) composite. The Journal of Physical Chemistry B, 103(46), 10143-10148.
    Li, H., Zou, L., Pan, L., & Sun, Z. (2010a). Novel graphene-like electrodes for capacitive deionization. Environmental science & technology, 44(22), 8692-8697.
    Li, H., Zou, L., Pan, L., & Sun, Z. (2010b). Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology, 75(1), 8-14.
    Li, Q., Ma, H., Tang, Y., & Chen, W. (2021a). Combined effect of NaAlO2 and NaOH on the early age hydration of Portland cement with a high concentration of borate solution. Cement and Concrete Research, 144, 106430. DOI: 10.1016/j.cemconres.2021.106430
    Li, S., Tan, X., Li, H., Gao, Y., Wang, Q., Li, G., & Guo, M. (2022a). Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor. Scientific Reports, 12(1), 1-17.
    Li, W., Gao, S., Wu, L., Qiu, S., Guo, Y., Geng, X., Chen, M., Liao, S., Zhu, C., & Gong, Y. (2013). High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Scientific reports, 3(1), 1-6.
    Li, W., Li, Y., Cai, P., Zhang, M., Xia, T., Liang, X., Xiao, W., & Dong, J. (2023). A novel ion-imprinted polymer based on the principle of ion exchange by bulk polymerization for specific recognition and adsorption of nitrate in polluted groundwater. Journal of Water Process Engineering, 51, 103375. DOI: 10.1016/j.jwpe.2022.103375
    Li, X., Chao, Y., Chen, L., Chen, W., Luo, J., Wang, C., Wu, P., Li, H., & Zhu, W. (2020a). Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chemical Engineering Journal, 392, 123731. DOI: 10.1016/j.cej.2019.123731
    Li, X., Li, X., Dong, Y., Wang, L., Jin, C., Zhou, N., Chen, M., Dong, Y., Xie, Z., & Zhang, C. (2019). Porous cobalt oxides/carbon foam hybrid materials for high supercapacitive performance. Journal of Colloid and Interface Science, 542, 102-111.
    Li, X., & Xiang, Z. (2022b). Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction. Nature Communications, 13(1), 57. DOI: 10.1038/s41467-021-27735-1
    Li, X., Yue, W., Li, W.-b., Zhao, J., Zhang, Y., Gao, Y.-b., Gao, N., Feng, D., Wu, B., & Wang, B. (2022c). Rational design of 3D net-like carbon-based Mn3O4 anode material with an enhanced lithium storage performance. New Journal of Chemistry. DOI: 10.1039/D2NJ01618D
    Li, Y., Chen, N., Li, Z., Shao, H., & Qu, L. (2020b). Frontiers of carbon materials as capacitive deionization electrodes. Dalton Transactions, 49(16), 5006-5014.
    Li, Y., Low, G. K.-C., Scott, J. A., & Amal, R. (2010c). Arsenic speciation in municipal landfill leachate. Chemosphere, 79(8), 794-801.
    Li, Y., Lu, W., Zhao, Z., Zhao, M., Lyu, Y., Gong, L., Zhu, H., & Ding, Y. (2021b). Tuning surface oxygen group concentration of carbon supports to promote Fischer-Tropsch synthesis. Applied Catalysis A: General, 613, 118017. DOI: 10.1016/j.apcata.2021.118017
    Liang, J., Yu, J., Xing, W., Tang, W., Tang, N., & Guo, J. (2022). 3D interconnected network architectures assembled from W18O49 and Ti3C2 MXene with excellent electrochemical properties and CDI performance. Chemical Engineering Journal, 435, 134922. DOI: 10.1016/j.cej.2022.134922
    Liang, P., Sun, X., Bian, Y., Zhang, H., Yang, X., Jiang, Y., Liu, P., & Huang, X. (2017). Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination, 420, 63-69.
    Ligaray, M., Kim, N., Park, S., Park, J.-S., Park, J., Kim, Y., & Cho, K. H. (2020). Energy projection of the seawater battery desalination system using the reverse osmosis system analysis model. Chemical Engineering Journal, 395, 125082.
    Lin, G., Wang, Q., Yang, X., Cai, Z., Xiong, Y., & Huang, B. (2020). Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC advances, 10(30), 17768-17776.
    Linares, R. V., Yangali-Quintanilla, V., Li, Z., & Amy, G. (2011). Rejection of micropollutants by clean and fouled forward osmosis membrane. Water research, 45(20), 6737-6744.
    Liu, E., Lee, L. Y., Ong, S. L., & Ng, H. Y. (2020a). Treatment of industrial brine using Capacitive Deionization (CDI) towards zero liquid discharge–Challenges and optimization. Water research, 116059. DOI: 10.1016/j.watres.2020.116059
    Liu, H., Cheng, C., & Wu, H. (2021a). Sustainable utilization of wetland biomass for activated carbon production: A review on recent advances in modification and activation methods. Science of The Total Environment, 790, 148214. DOI: 10.1016/j.scitotenv.2021.148214
    Liu, H., & Qiu, H. (2020b). Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: a review. Chemical Engineering Journal, 393, 124691. DOI: 10.1016/j.cej.2020.124691
    Liu, M., Xue, Z., Zhang, H., & Li, Y. (2021b). Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination. Electrochemistry Communications, 125, 106974. DOI: 10.1016/j.elecom.2021.106974
    Liu, N.-L., Sun, S.-H., & Hou, C.-H. (2019a). Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Separation and Purification Technology, 215, 403-409.
    Liu, N., & Gao, Y. (2017). Recent progress in micro‐supercapacitors with in‐plane interdigital electrode architecture. Small, 13(45), 1701989. DOI: 10.1002/smll.201701989
    Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Chang, M.-C., Ma, C.-C. M., & Horng, R.-Y. (2016). Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques. Desalination, 379, 34-41.
    Liu, Q., Li, X., & Xiao, D. (2022a). Design of a novel asymmetric capacitive deionization device with high desalination performance. Environmental Science: Water Research & Technology, 8(9), 1938-1953.
    Liu, R., Yao, S., & Shen, Y. (2022b). Pore-scale study of ion transport and intercalation processes of capacitive deionization cells with intercalation electrodes based on lattice Boltzmann method. Desalination, 532, 115718. DOI: 10.1016/j.desal.2022.115718
    Liu, S., Wang, Z., Han, M., Wang, G., Hayat, T., & Chen, G. (2021c). Energy-water nexus in seawater desalination project: a typical water production system in China. Journal of cleaner Production, 279, 123412. DOI: 10.1126/sciadv.aaz0906
    Liu, T., Serrano, J., Elliott, J., Yang, X., Cathcart, W., Wang, Z., He, Z., & Liu, G. (2020c). Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers. Science Advances, 6(16), eaaz0906.
    Liu, X., Liu, H., Mi, M., Kong, W., Ge, Y., & Hu, J. (2019b). Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Separation and Purification Technology, 224, 44-50.
    Lobo, C., Castellari, J., Lerner, J. C., Bertola, N., & Zaritzky, N. (2020). Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic(V) from water. International Journal of Biological Macromolecules, 164, 1575-1583.
    Long, Y., Lang, J., Liu, K., Wang, K., Wu, Y., Zhang, H., Li, M., Jin, Y., He, X., & Wu, H. (2023). Molten lithium metal battery with Li4Ti5O12 cathode and solid electrolyte. eTransportation, 100235. DOI: 10.1016/j.etran.2023.100235
    Lu, T., & Chen, Q. (2020). A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theoretical Chemistry Accounts, 139(2), 25. DOI: 10.1007/s00214-019-2541-z
    Lu, Y., Yang, F., Chen, S., Shi, W., Qi, C., & Peng, G. (2022). Decomplexation of Ni (II)-citrate and recovery of nickel from chelated nickel containing electroplating wastewater by peroxymonosulfate with nickel. Separation and Purification Technology, 283, 120142. DOI: 10.1016/j.seppur.2021.120142
    Luo, G., Zhu, L., Li, X., Zhou, G., Sun, J., Chen, L., Chao, Y., Jiang, L., & Zhu, W. (2022a). Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode. Journal of Energy Chemistry, 69, 244-252.
    Luo, L., He, Q., Chen, S., Yang, D., & Chen, Y. (2022b). Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination. Environmental Research, 208, 112727. DOI: 10.1016/j.envres.2022.112727
    Luo, L., Lan, Y., Zhang, Q., Deng, J., Luo, L., Zeng, Q., Gao, H., & Zhao, W. (2022c). A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors. Journal of Energy Storage, 55, 105839. DOI: 10.1016/j.est.2022.105839
    Lv, W., Wang, Z., Zheng, X., Cao, H., He, M., Zhang, Y., Yu, H., & Sun, Z. (2020). Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes. ACS Sustainable Chemistry & Engineering, 8(13), 5165-5174.
    Ma, H.-P., Wang, H.-L., Qi, Y.-H., Chao, Z.-L., Tian, L., Yuan, W., Dai, L., & Lv, W.-J. (2022). Reducing fouling of an industrial multi-stage nanofiltration membrane based on process control: A novel shutdown system. Journal of Membrane Science, 644, 120141. DOI: 10.1016/j.memsci.2021.120141
    Ma, X., Chen, Y.-A., Zhou, K., Wu, P.-C., & Hou, C.-H. (2019). Enhanced desalination performance via mixed capacitive-Faradaic ion storage using RuO2-activated carbon composite electrodes. Electrochimica Acta, 295, 769-777.
    Ma, X., & Ouyang, F. (2013). Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science, 268, 566-570.
    Madrakian, T., Afkhami, A., Zolfigol, M. A., & Solgi, M. (2006). Separation, preconcentration and determination of silver ion from water samples using silica gel modified with 2, 4, 6-trimorpholino-1, 3, 5-triazin. Journal of Hazardous Materials, 128(1), 67-72.
    Mahendran, G. B., Ramalingam, S. J., Rayappan, J. B. B., Kesavan, S., Periathambi, T., & Nesakumar, N. (2020). Green preparation of reduced graphene oxide by Bougainvillea glabra flower extract and sensing application. Journal of Materials Science: Materials in Electronics, 31, 14345-14356.
    Maheshwari, K., & Agrawal, M. (2020). Advances in capacitive deionization as an effective technique for reverse osmosis reject stream treatment. Journal of Environmental Chemical Engineering, 8(6), 104413. DOI: 10.1016/j.jece.2020.104413
    Maiga, Y., Young, S., Orner, K. D., Mihelcic, J. R., Harwood, V. J., & Ouattara, A. S. (2022). Isolation and Assessment of Cyanide Biodegradation Potential of Indigenous Bacteria from Contaminated Soil. Journal of Environmental Protection, 13(10), 716-731.
    Manasa, P., Lei, Z. J., & Ran, F. (2020). Biomass waste derived low cost activated carbon from carchorus olitorius (Jute Fiber) as sustainable and novel electrode material. Journal of Energy Storage, 30, 101494. DOI: 10.1016/j.est.2020.101494
    Manasa, P., Sambasivam, S., & Ran, F. (2022). Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review. Journal of Energy Storage, 54, 105290. DOI: 10.1016/j.est.2022.105290
    Manju, S., & Sagar, N. (2017). Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renewable and Sustainable Energy Reviews, 73, 594-609.
    Marc, B., Amélie, J., Jean-Pascal, R., Manoj, D., Guillaume, M., & Delphine, C. (2018). Local environment of arsenic in sulfide minerals: insights from high-resolution X-ray spectroscopies, and first-principles calculations at the As K-edge. Journal of Analytical Atomic Spectrometry, 33(12), 2070-2082.
    Martínková, L., Bojarová, P., Sedova, A., & Křen, V. (2023). Recent trends in the treatment of cyanide-containing effluents: Comparison of different approaches. Critical Reviews in Environmental Science and Technology, 53(3), 416-434.
    Masscheleyn, P. H., Delaune, R. D., & Patrick Jr, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental science & technology, 25(8), 1414-1419.
    Matin, A., Laoui, T., Falath, W., & Farooque, M. (2021). Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies. Science of The Total Environment, 765, 142721. DOI: 10.1016/j.scitotenv.2020.142721
    Matschullat, J. (2000). Arsenic in the geosphere-a review. Science of The Total Environment, 249(1-3), 297-312.
    Mauger, A., Armand, M., Julien, C., & Zaghib, K. (2017). Challenges and issues facing lithium metal for solid-state rechargeable batteries. Journal of Power Sources, 353, 333-342.
    Mazlan, N. A., Butt, F. S., Lewis, A., Yang, Y., Yang, S., & Huang, Y. (2022). The Growth of Metal–Organic Frameworks in the Presence of Graphene Oxide: A Mini Review. Membranes, 12(5), 501. DOI: 10.3390/membranes12050501
    McCutcheon, J. R., McGinnis, R. L., & Elimelech, M. (2006). Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 278(1-2), 114-123.
    McKague, M., Fathiannasab, H., Agnaou, M., Sadeghi, M. A., & Gostick, J. (2022). Extending pore network models to include electrical double layer effects in micropores for studying capacitive deionization. Desalination, 535, 115784.
    Meher, S. K., & Rao, G. R. (2011). Ultralayered Co3O4 for high-performance supercapacitor applications. The Journal of Physical Chemistry C, 115(31), 15646-15654. DOI: 10.1016/j.desal.2022.115784
    Melkiyur, I., Rathinam, Y., Kumar, P. S., Sankaiya, A., Pitchaiya, S., Ganesan, R., & Velauthapillai, D. (2023). A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects. Renewable and Sustainable Energy Reviews, 173, 113106. DOI: 10.1016/j.rser.2022.113106
    Men, L., Chen, C., Liu, A., Yu, S., Zhou, J., Xie, Y., & Ju, D. (2022). N-doped porous carbon-based capacitive deionization electrode materials loaded with activated carbon fiber for water desalination applications. Journal of Environmental Chemical Engineering, 10(3), 107943. DOI: 10.1016/j.jece.2022.107943
    Meng, Q., Xu, W., Zhu, S., Liang, Y., Cui, Z., Yang, X., & Inoue, A. (2019). Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high-performance asymmetric supercapacitors. Electrochimica Acta, 296, 198-205.
    Migliore, M., Corongiu, G., Clementi, E., & Lie, G. (1988). Monte Carlo study of free energy of hydration for Li+, Na+, K+, F−, and Cl− with abinitio potentials. The Journal of chemical physics, 88(12), 7766-7771.
    Mishra, B. K., Kumar, P., Saraswat, C., Chakraborty, S., & Gautam, A. (2021). Water security in a changing environment: concept, challenges and solutions. Water, 13(4), 490. DOI: 10.3390/w13040490
    Mishra, D., Sen, K., Mondal, A., Kundu, S., & Mondal, N. K. (2022). Geochemical appraisal of groundwater arsenic contamination and human health risk assessment in the Gangetic Basin in Murshidabad District of West Bengal, India. Environmental Earth Sciences, 81(5), 157. DOI: 10.1007/s12665-022-10273-4
    Mo, Z., Li, D., & She, Q. (2022). Semi-closed reverse osmosis (SCRO): A concise, flexible, and energy-efficient desalination process. Desalination, 544, 116147.
    Mongkolsuttirat, K., & Buajarern, J. (2021). Uncertainty evaluation of crystallite size measurements of nanoparticle using X-Ray Diffraction analysis (XRD). Paper presented at the Journal of Physics: Conference Series. DOI: 10.1088/1742-6596/1719/1/012054
    Moradi, O., & Sharma, G. (2021). Emerging novel polymeric adsorbents for removing dyes from wastewater: a comprehensive review and comparison with other adsorbents. Environmental Research, 201, 111534. DOI: 10.1016/j.envres.2021.111534
    Mudali, U. K., Patil, M., Saravanabhavan, R., & Saraswat, V. (2021). Review on E-waste recycling: Part I-a prospective urban mining opportunity and challenges. Transactions of the Indian National Academy of Engineering, 6, 547-568.
    Mudhoo, A., Sharma, S. K., Garg, V. K., & Tseng, C.-H. (2011). Arsenic: an overview of applications, health, and environmental concerns and removal processes. Critical reviews in environmental science and technology, 41(5), 435-519.
    Mukherjee, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Das, B., Nayak, B., Lodh, D., Rahman, M. M., & Chakraborti, D. (2006). Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. Journal of Health, Population and Nutrition, 142-163.
    Murodjon, S., Yu, X., Li, M., Duo, J., & Deng, T. (2020). Lithium recovery from brines including seawater, salt lake brine, underground water and geothermal water. Thermodynamics and Energy Engineering, 1-39.
    Naderi, M. (2015). Surface Area: Brunauer-Emmett-Teller (BET). In Progress in Filtration and Separation (pp. 585-608): Elsevier.
    Nakhjiri, A. T., Sanaeepur, H., Amooghin, A. E., & Shirazi, M. M. A. (2022). Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: a critical review. Desalination, 527, 115510. DOI: 10.1016/j.desal.2021.115510
    Neme, I., Gonfa, G., & Masi, C. (2022). Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4. Results in Materials, 15, 100304. DOI: 10.1016/j.rinma.2022.100304
    Nicomel, N. R., Leus, K., Folens, K., Van Der Voort, P., & Du Laing, G. (2016). Technologies for arsenic removal from water: current status and future perspectives. International journal of environmental research and public health, 13(1), 62. DOI: 10.3390/ijerph13010062
    Nidheesh, P. V., Divyapriya, G., Cerkez, E. B., Gopinath, A., Banerji, T., & Strongin, D. R. (2022). Oxidative sorption of arsenite from water by iron: a mechanistic perspective. Environmental Science: Water Research & Technology, 8(11), 2466-2490.
    Nie, G., Zhao, X., Luan, Y., Jiang, J., Kou, Z., & Wang, J. (2020). Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale, 12(25), 13225-13248.
    Nieto, C. H. D., Palacios, N. A., Verbeeck, K., Prévoteau, A., Rabaey, K., & Flexer, V. (2019). Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water research, 154, 117-124.
    Ning, J., Xia, M., Wang, D., Feng, X., Zhou, H., Zhang, J., & Hao, Y. (2021). Superior pseudocapacitive storage of a novel Ni3Si2/NiOOH/graphene nanostructure for an all-solid-state supercapacitor. Nano-micro letters, 13, 1-14.
    Nisha, B., Vidyalakshmi, Y., & Razack, S. A. (2020). Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications. Advanced Powder Technology. DOI: 10.1016/j.apt.2019.12.026
    Noorollahi, Y., Taghipoor, S., & Sajadi, B. (2017). Geothermal sea water desalination system (GSWDS) using abandoned oil/gas wells. Geothermics, 67, 66-75.
    Noro, S.-i., Kitagawa, S., Akutagawa, T., & Nakamura, T. (2009). Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties. Progress in Polymer Science, 34(3), 240-279.
    Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: a review. Membranes, 10(5), 89. DOI: 10.3390/membranes10050089
    Ofori-Sarpong, G., Adam, A.-S., & Amankwah, R. K. (2020). Detoxification of cyanide wastewater by cyanotrophic organisms: the case of phanerochaete chrysosporium. Ghana Mining Journal, 20(1), 34-44.
    Okampo, E. J., & Nwulu, N. (2021). Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 140, 110712. DOI: 10.1016/j.rser.2021.110712
    Omar, A., Li, Q., Saldivia, D., Nashed, A., & Van Dang, B. (2022). Solar-driven water treatment: Generation III-Low technology readiness. In Solar-Driven Water Treatment (pp. 201-261): Elsevier.
    Omosebi, A., Li, Z., Holubowitch, N., Gao, X., Landon, J., Cramer, A., & Liu, K. (2020). Energy recovery in capacitive deionization systems with inverted operation characteristics. Environmental Science: Water Research & Technology, 6(2), 321-330.
    Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment -past, present and future (a review). Desalination, 228(1-3), 10-29. DOI: http://dx.doi.org/10.1016/j.desal.2007.08.005
    Orooji, Y., Nezafat, Z., Nasrollahzadeh, M., Shafiei, N., Afsari, M., Pakzad, K., & Razmjou, A. (2022). Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination, 529, 115624. DOI: 10.1016/j.desal.2022.115624
    Ossman, M., Abdel Fatah, M., & Taha, N. A. (2014). Fe(III) removal by activated carbon produced from Egyptian rice straw by chemical activation. Desalination and Water Treatment, 52(16-18), 3159-3168.
    Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M., & Santiago, J. G. (2018). Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Separation and purification technology, 194, 410-415.
    Padmaja, K., Cherukuri, J., & Reddy, M. A. (2020). A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent. Journal of Water Process Engineering, 34, 101153. DOI: 10.1016/j.jwpe.2020.101153
    Pal, A., Uddin, K., Saha, B. B., Thu, K., Kil, H.-S., Yoon, S.-H., & Miyawaki, J. (2020). A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons. Applied Energy, 264, 114720. DOI: 10.1016/j.apenergy.2020.114720
    Palenzuela, P., Hassan, A. S., Zaragoza, G., & Alarcón-Padilla, D.-C. (2014). Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination, 337, 31-42.
    Pan, J., Zheng, Y., Ding, J., Gao, C., Van der Bruggen, B., & Shen, J. (2018). Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane. Industrial & Engineering Chemistry Research, 57(20), 7048-7053.
    Pandey, V. C., Singh, J. S., Singh, R. P., Singh, N., & Yunus, M. (2011). Arsenic hazards in coal fly ash and its fate in Indian scenario. Resources, Conservation and Recycling, 55(9-10), 819-835.
    Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of power sources, 157(1), 11-27.
    Pang, D., Wang, C.-C., Wang, P., Liu, W., Fu, H., & Zhao, C. (2020). Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A (Fe) decorated on cotton fibers. Chemosphere, 254, 126829. DOI: 10.1016/j.desal.2022.115562
    Pang, T., & Shen, J. (2022). Visualizing the landscape and evolution of capacitive deionization by scientometric analysis. Desalination, 527, 115562. DOI: 10.1016/j.cej.2019.123269
    Paranjape, P., & Sadgir, P. (2022). Removal of heavy metals from water using low-cost bioadsorbent: a review. Recent Trends in Construction Technology and Management: Select Proceedings of ACTM 2021, 527-546.
    Park, H. E., Hong, C. H., & Yoon, W. Y. (2008). The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. Journal of power sources, 178(2), 765-768.
    Park, S., Shin, D., Yeo, T., Seo, B., Hwang, H., Lee, J., & Choi, W. (2020). Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors. Chemical Engineering Journal, 384, 123269.
    Patil, Y., & Paknikar, K. (2000). Development of a process for biodetoxification of metal cyanides from waste waters. Process biochemistry, 35(10), 1139-1151.
    Petrick, J. S., Jagadish, B., Mash, E. A., & Aposhian, H. V. (2001). Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chemical research in toxicology, 14(6), 651-656.
    Pinel-Raffaitin, P., Le Hecho, I., Amouroux, D., & Potin-Gautier, M. (2007). Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases. Environmental science & technology, 41(13), 4536-4541.
    Planer-Friedrich, B., Lehr, C., Matschullat, J., Merkel, B. J., Nordstrom, D. K., & Sandstrom, M. W. (2006). Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochimica et Cosmochimica Acta, 70(10), 2480-2491.
    Ponthieu, M., Pinel-Raffaitin, P., Le Hecho, I., Mazeas, L., Amouroux, D., Donard, O. F., & Potin-Gautier, M. (2007). Speciation analysis of arsenic in landfill leachate. Water research, 41(14), 3177-3185.
    Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442.
    Prajapati, M., Shah, M., & Soni, B. (2022). A comprehensive review of the geothermal integrated multi-effect distillation (MED) desalination and its advancements. Groundwater for Sustainable Development, 100808. DOI: 10.1016/j.gsd.2022.100808
    Prajapati, M., Shah, M., Soni, B., Parikh, S., Sircar, A., Balchandani, S., Thakore, S., & Tala, M. (2021). Geothermal-solar integrated groundwater desalination system: Current status and future perspective. Groundwater for Sustainable Development, 12, 100506. DOI: 10.1016/j.gsd.2020.100506
    Pramanik, B. K., Asif, M. B., Roychand, R., Shu, L., Jegatheesan, V., Bhuiyan, M., & Hai, F. I. (2020). Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere, 260, 127623. DOI: 10.1016/j.chemosphere.2020.127623
    Qi, Z., Younis, A., Chu, D., & Li, S. (2016). A facile and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-micro letters, 8(2), 165-173.
    Qian, Y., Zhang, X., Liu, C., Zhou, C., & Huang, A. (2019). Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance. Desalination, 460, 56-63.
    Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., & Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, 100-114.
    Qin, Y., Cui, Y., Lei, L., Gao, Y., Zhou, Z., Li, Y., & Shi, X. (2020). An electrochemical process comparison of As(III) in simulated groundwater at low voltage in mixed and divided electrolytic cells. Water, 12(4), 1126. DOI: 10.3390/w12041126
    Raab, A., Kubachka, K., Strohmaier, M., Preihs, M., & Feldmann, J. (2022). New arsenic compound identified in rice grain: dimethylarsonyldimethylarsinic acid. Environmental Chemistry. DOI: 10.1071/EN22063
    Rahaman, M. S., Rahman, M. M., Mise, N., Sikder, M. T., Ichihara, G., Uddin, M. K., Kurasaki, M., & Ichihara, S. (2021a). Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution, 289, 117940. DOI: 10.1016/j.envpol.2021.117940
    Rahaman, M. S., Rahman, M. M., Mise, N., Sikder, T., Ichihara, G., Uddin, M. K., Kurasaki, M., & Ichihara, S. (2021b). Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution, 117940. DOI: 10.1016/j.envpol.2021.117940
    Rahidul Hassan, H. (2023). A review on different arsenic removal techniques used for decontamination of drinking water. Environmental Pollutants and Bioavailability, 35(1), 2165964. DOI: 10.1080/26395940.2023.2165964
    Rajoria, S., Vashishtha, M., & Sangal, V. K. (2022). Treatment of electroplating industry wastewater: a review on the various techniques. Environmental Science and Pollution Research, 29(48), 72196-72246.
    Raju, N. J. (2022). Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research, 203, 111782. DOI: 10.1016/j.envres.2021.111782
    Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater (Vol. 10): American public health association Washington, DC.
    Rommerskirchen, A., Linnartz, C. J., Müller, D., Willenberg, L. K., & Wessling, M. (2018a). Energy recovery and process design in continuous flow–electrode capacitive deionization processes. ACS Sustainable Chemistry & Engineering, 6(10), 13007-13015.
    Rommerskirchen, A., Ohs, B., Hepp, K. A., Femmer, R., & Wessling, M. (2018b). Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes. Journal of Membrane Science, 546, 188-196.
    Roshan, B., Rasoulzadeh, H., Massoudinejad, M., Saadani, M., & Sanaei, D. (2022). Enhanced desalination efficiency of flow-through capacitive deionization cell by mesh electrode with granular aerogel carbon in the removal of ions from synthetic and real samples. Water Reuse, 12(1), 33-51.
    Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. S. (2013). Adsorption by powders and porous solids: principles, methodology and applications: Academic press.
    Ryu, T., Lee, D.-H., Ryu, J. C., Shin, J., Chung, K.-S., & Kim, Y. H. (2015). Lithium recovery system using electrostatic field assistance. Hydrometallurgy, 151, 78-83.
    Sadrzadeh, M., & Mohammadi, T. (2008). Sea water desalination using electrodialysis. Desalination, 221(1-3), 440-447.
    Saeed, R., Konsowa, A., Shalaby, M. S., Mansour, M. S., & Eloffy, M. (2023). Optimization of Integrated Forward–Reverse Osmosis Desalination Processes for Brackish Water. Alexandria Engineering Journal, 63, 89-102.
    Saheed, I. O., Azeez, S. O., & Suah, F. B. M. (2022). Imidazolium based ionic liquids modified polysaccharides for adsorption and solid-phase extraction applications: A review. Carbohydrate Polymers, 120138. DOI: 10.1016/j.carbpol.2022.120138
    Sahin, M. E., Blaabjerg, F., & Sangwongwanich, A. (2020). A review on supercapacitor materials and developments. Turkish Journal of Materials, 5(2), 10-24.
    Sahoo, R., Pham, D. T., Lee, T. H., Luu, T. H. T., Seok, J., & Lee, Y. H. (2018). Redox-driven route for widening voltage window in asymmetric supercapacitor. ACS nano, 12(8), 8494-8505.
    Sahoo, T. R., & Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In Nanomaterials for the detection and removal of wastewater pollutants (pp. 161-222): Elsevier.
    Said, I. A., Fuentes, N., & Li, Q. (2022). Energy recovery in electrified capacitive deionization systems for wastewater treatment and desalination: A comprehensive review. Chemical Engineering and Processing-Process Intensification, 109030. DOI: 10.1016/j.cep.2022.109030
    Sakthivel, T. S., Soosaimanickam, A., Paul David, S., Sivaramalingam, A., & Sambandham, B. (2021). Metal oxides for removal of arsenic contaminants from water. Metal, metal-oxides and metal-organic frameworks for environmental remediation, 147-194.
    Salado, M., Lanceros-Mendez, S., & Lizundia, E. (2021). Free-standing intrinsically conducting polymer membranes based on cellulose and poly (vinylidene fluoride) for energy storage applications. European Polymer Journal, 144, 110240. DOI: 10.1016/j.eurpolymj.2020.110240
    Samadiy, M., & Deng, T. (2021). Lithium Recovery from Water Resources by Ion Exchange and Sorption Method. Journal of the Chemical Society of Pakistan, 43(4). DOI: 10.52568/000585
    Sanjrani, M., Zhou, B., Zhao, H., Bhutto, S., Muneer, A., & Xia, S. (2019). Arsenic contaminated groundwater in China and its treatment options, a review. Applied Ecology and Environmental Research, 17(2), 1655-1683.
    Santiago, A. R., Jeon, J., Kayiwa, E., Cusick, R., & Su, X. (2022a). Membrane-based electrochemical technologies: III. Selective ion removal and recovery. In Electrochemical Membrane Technology for Water and Wastewater Treatment (pp. 403-444): Elsevier.
    Santiago, R., Diaz, I., Gonzalez-Miquel, M., Navarro, P., & Palomar, J. (2022b). Assessment of bio-ionic liquids as promising solvents in industrial separation processes: Computational screening using COSMO-RS method. Fluid Phase Equilibria, 560, 113495. DOI: 10.1016/j.fluid.2022.113495
    Saputro, E. A., Wulan, V. D. R., Winata, B. Y., Yogaswara, R. R., & Erliyanti, N. K. (2020). Process of activated carbon form coconut shells through chemical activation. Natural Science: Journal of Science and Technology, 9(1), 23-28-23-28.
    Sarawutanukul, S., Phattharasupakun, N., & Sawangphruk, M. (2019). 3D CVD graphene oxide-coated Ni foam as carbo-and electro-catalyst towards hydrogen evolution reaction in acidic solution: In situ electrochemical gas chromatography. Carbon, 151, 109-119.
    Sathish, S., Nirmala, R., Kim, H. Y., & Navamathavan, R. (2022). Deriving activated carbon using microwave combustion technique and its energy storage applications: a topical review. Carbon letters, 32(5), 1151-1171.
    Satpathy, B., Jena, S., Das, S., & Das, K. (2022). A comprehensive review of various non-cyanide electroplating baths for the production of silver and gold coatings. International Materials Reviews, 1-37.
    Sayed, E. T., Olabi, A., Shehata, N., Al Radi, M., Muhaisen, O. M., Rodriguez, C., Atieh, M. A., & Abdelkareem, M. A. (2022). Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment. Ain Shams Engineering Journal, 102030.
    Schubert, U. S., & Hüsing, N. (2019). Synthesis of inorganic materials: John Wiley & Sons.
    Sdanghi, G., Canevesi, R. L., Celzard, A., Thommes, M., & Fierro, V. (2020). Characterization of carbon materials for hydrogen storage and compression. C, 6(3), 46. DOI: 10.3390/c6030046
    Sebogodi, K. R., Johakimu, J. K., & Sithole, B. B. (2021). A review of technologies used in handling the acid mine drainage challenge: Perspectives on using green liquor dregs as a sustainable option for treatment of acid mine drainage. The Journal of Solid Waste Technology and Management, 47(1), 1-18.
    Sekisov, A., & Rasskazova, A. (2021). Assessment of the possibility of hydrometallurgical processing of low-grade ores in the oxidation zone of the Malmyzh Cu-Au porphyry deposit. Minerals, 11(1), 69. DOI: 10.3390/min11010069
    Selvaraj, A. R., Chinnadurai, D., Cho, I., Bak, J.-S., & Prabakar, K. (2022). Bio-waste wood-derived porous activated carbon with tuned microporosity for high performance supercapacitors. Journal of Energy Storage, 52, 104928.
    Seo, S.-J., Jeon, H., Lee, J. K., Kim, G.-Y., Park, D., Nojima, H., Lee, J., & Moon, S.-H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water research, 44(7), 2267-2275.
    Seow, Y. X., Tan, Y. H., Mubarak, N., Kansedo, J., Khalid, M., Ibrahim, M. L., & Ghasemi, M. (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), 107017. DOI: 10.1016/j.jece.2021.107017
    Shahedi, A., Darban, A., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current opinion in electrochemistry, 22, 154-169.
    Shapira, B., Cohen, I., Penki, T. R., Avraham, E., & Aurbach, D. (2018). Energy extraction and water treatment in one system: The idea of using a desalination battery in a cooling tower. Journal of Power Sources, 378, 146-152.
    Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801-825.
    Sharma, V. K., Dutta, P. K., & Ray, A. K. (2007). Review of kinetics of chemical and photocatalytical oxidation of arsenic (III) as influenced by pH. Journal of Environmental Science and Health, Part A, 42(7), 997-1004.
    Shen, X., Jiang, L., Ji, Z., Wu, J., Zhou, H., & Zhu, G. (2011). Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. Journal of Colloid and Interface Science, 354(2), 493-497. DOI: 10.1016/j.jcis.2010.11.037
    Shi, C., Jing, Y., Xiao, J., Wang, X., Yao, Y., & Jia, Y. (2017). Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Separation and Purification Technology, 172, 473-479.
    Shi, S., Wan, G., Wu, L., He, Z., Wang, K., Tang, Y., Xu, X., & Wang, G. (2019). Ultrathin manganese oxide nanosheets uniformly coating on carbon nanocoils as high-performance asymmetric supercapacitor electrodes. Journal of colloid and interface science, 537, 142-150.
    Shin, S.-J., Kim, D. H., Bae, G., Ringe, S., Choi, H., Lim, H.-K., Choi, C. H., & Kim, H. (2022). On the importance of the electric double layer structure in aqueous electrocatalysis. Nature Communications, 13(1), 174. DOI: 10.1038/s41467-021-27909-x
    Shin, Y.-U., Lim, J., Boo, C., & Hong, S. (2021). Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency. Desalination, 502, 114930. DOI: 10.1016/j.desal.2021.114930
    Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. DOI: 10.1016/j.jece.2021.105688
    Shu, T., Gao, H., Li, Q., Wei, F., Ren, Y., Sun, Z., Qi, J., & Sui, Y. (2020). One-step phosphating synthesis of CoP nanosheet arrays combined with Ni2P as a high-performance electrode for supercapacitors. Nanoscale, 12(40), 20710-20718.
    Siekierka, A., Tomaszewska, B., & Bryjak, M. (2018). Lithium capturing from geothermal water by hybrid capacitive deionization. Desalination, 436, 8-14.
    Singh, G., Ruban, A. M., Geng, X., & Vinu, A. (2022). Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chemical Engineering Journal, 139045. DOI: 10.1016/j.cej.2022.139045
    Singh, K., Bouwmeester, H., De Smet, L., Bazant, M., & Biesheuvel, P. (2018). Theory of water desalination with intercalation materials. Physical Review Applied, 9(6), 064036. DOI: 10.1103/PhysRevApplied.9.064036
    Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and environmental safety, 112, 247-270.
    Singh, S., Kumar, V., Datta, S., Dhanjal, D. S., Sharma, K., Samuel, J., & Singh, J. (2020). Current advancement and future prospect of biosorbents for bioremediation. Science of The Total Environment, 709, 135895. DOI: 10.1016/j.scitotenv.2019.135895
    Sinha, D., & Prasad, P. (2020). Health effects inflicted by chronic low‐level arsenic contamination in groundwater: A global public health challenge. Journal of Applied Toxicology, 40(1), 87-131.
    Sonal, S., & Mishra, B. K. (2021). Role of coagulation/flocculation technology for the treatment of dye wastewater: trend and future aspects. Water pollution and management practices, 303-331.
    Song, X., Liu, J., Jiang, Q., Zhang, P., Shao, Y., He, W., & Feng, Y. (2019). Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe3O4. Chemical Engineering Journal, 374, 1344-1352.
    Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195, 145-154.
    Su, X., & Hatton, T. A. (2017). Redox-electrodes for selective electrochemical separations. Advances in Colloid and Interface Science, 244, 6-20.
    Sud, D. Sol-gel synthesis of transition metal oxides based electrode materials for supercapacitors. Materials Research Foundations, 24.
    Sud, D., Mahajan, G., & Kaur, M. (2008a). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–A review. Bioresource technology, 99(14), 6017-6027.
    Sud, D., Mahajan, G., & Kaur, M. P. (2008b). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99(14), 6017-6027. DOI: 10.1016/j.biortech.2007.11.064
    Suess, E., Scheinost, A. C., Bostick, B. C., Merkel, B. J., Wallschlaeger, D., & Planer-Friedrich, B. (2009). Discrimination of thioarsenites and thioarsenates by X-ray absorption spectroscopy. Analytical chemistry, 81(20), 8318-8326.
    Sun, J., Chillrud, S. N., Mailloux, B. J., Stute, M., Singh, R., Dong, H., Lepre, C. J., & Bostick, B. C. (2016a). Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Chemosphere, 144, 1106-1115.
    Sun, J., Quicksall, A. N., Chillrud, S. N., Mailloux, B. J., & Bostick, B. C. (2016b). Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere, 153, 254-261.
    Suss, M. E., & Presser, V. (2018). Water desalination with energy storage electrode materials. Joule, 2(1), 10-15.
    Swain, B. (2017). Recovery and recycling of lithium: a review. Separation and Purification Technology, 172, 388-403.
    Tan, C., He, C., Fletcher, J., & Waite, T. D. (2020). Energy recovery in pilot scale membrane CDI treatment of brackish waters. Water research, 168, 115146.
    Tan, N. P. B., Ucab, P. M. L., Dadol, G. C., Jabile, L. M., Talili, I. N., & Cabaraban, M. T. I. (2022). A review of desalination technologies and its impact in the Philippines. Desalination, 534, 115805. DOI: 10.1016/j.desal.2022.115805.
    Taneja, S., Yadav, S., Pipil, H., Karaca, O., & Haritash, A. (2023). Soil-water Interactions and arsenic enrichment in groundwater. Hydrogeochemistry of Aquatic Ecosystems, 97-120.
    Tang, H., Aili, D., Tufa, R. A., Kraglund, M. R., Wu, Q., Pan, C., Cleemann, L. N., & Li, Q. (2022). Anion conductivity of cation exchange membranes in aqueous supporting electrolytes. Solid State Ionics, 383, 115984. DOI: 10.1016/j.ssi.2022.115984
    Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D., & Zeng, G. (2019). Various cell architectures of capacitive deionization: recent advances and future trends. Water research, 150, 225-251.
    Tayefeh, M. (2022). An innovative rearrangement and comprehensive comparison of the combination of compressed air energy storage (CAES) with multi stage flash (MSF) desalination and multi effect distillation (MED) systems. Journal of Energy Storage, 52, 105025.
    Tayyeban, E., Deymi-Dashtebayaz, M., & Dadpour, D. (2022). Multi objective optimization of MSF and MSF-TVC desalination systems with using the surplus low-pressure steam (an energy, exergy and economic analysis). Computers & Chemical Engineering, 160, 107708. DOI: 10.1016/j.compchemeng.2022.107708
    Thiruraman, J. P., Masih Das, P., & Drndic, M. (2020). Ions and water dancing through atom-scale holes: a perspective toward “size zero”. ACS nano, 14(4), 3736-3746. DOI: 10.1021/acsnano.0c01625
    Tholkappiyan, R., Naveen, A. N., Vishista, K., & Hamed, F. (2018). Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes. Journal of Taibah University for Science, 12(5), 669-677.
    Thomas, M., Bąk, J., & Królikowska, J. (2020). Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalin. Water Treat, 208, 261-272.
    Tian, S., Li, Y., Zeng, H., Guan, W., Wang, Y., & Zhao, X. (2016). Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl- from anodic oxidation. Journal of Colloid and Interface Science, 482, 205-211.
    Tian, X., Bao, S., & Zhang, Y. (2021). Selective adsorption mechanism of resin-activated carbon composite electrode for capacitive deionization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, DOI: 125935. 10.1016/j.colsurfa.2020.125935
    Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology: John Wiley & Sons.
    Trócoli, R., Erinmwingbovo, C., & La Mantia, F. (2017). Optimized Lithium Recovery from brines by using an electrochemical ion‐pumping process based on λ‐MnO2 and nickel hexacyanoferrate. ChemElectroChem, 4(1), 143-149.
    Turner, S., & Buseck, P. R. (1979). Manganese oxide tunnel structures and their intergrowths. Science, 203(4379), 456-458.
    Ugo, P., & Moretto, L. M. (1995). Ion‐exchange voltammetry at polymer‐coated electrodes: principles and analytical prospects. Electroanalysis, 7(12), 1105-1113.
    Urita, K., Urita, C., Fujita, K., Horio, K., Yoshida, M., & Moriguchi, I. (2017). The ideal porous structure of EDLC carbon electrodes with extremely high capacitance. Nanoscale, 9(40), 15643-15649.
    Vakifahmetoglu, C., Semerci, T., & Soraru, G. D. (2020). Closed porosity ceramics and glasses. Journal of the American Ceramic Society, 103(5), 2941-2969.
    Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: a review. Separation and Purification Technology, 224, 373-387.
    Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. DOI: 10.1016/j.molliq.2019.111197
    Veeramani, V., Sivakumar, M., Chen, S.-M., Madhu, R., Alamri, H. R., Alothman, Z. A., Hossain, M. S. A., Chen, C.-K., Yamauchi, Y., & Miyamoto, N. (2017). Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC advances, 7(72), 45668-45675.
    Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021). A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record, 21(7), 1570-1610.
    Vences-Alvarez, E., Chazaro-Ruiz, L. F., & Rangel-Mendez, J. R. (2022). New bimetallic adsorbent material based on cerium-iron nanoparticles highly selective and affine for arsenic (V). Chemosphere, 297, 134177. DOI: 10.1016/j.chemosphere.2022.134177
    Vidyarthi, S., Vaddella, V., Cao, N., Kuppu, S., & Pandey, P. (2021). Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: a review. Future Foods, 3, 100010. DOI: 10.1016/j.fufo.2020.100010
    Viereck-Götte, L., & Ewers, U. (1997). Grundlagen und Verfahren der Ableitung von Richtwerten. Geochemie und Umwelt: Relevante Prozesse in Atmo-, Pedo-und Hydrosphäre, 245-264.
    Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science & Health, 2, 32-45.
    Wadsley, A. (1953). The crystal structure of psilomelane, (Ba, H2O)2Mn5O10. Acta Crystallographica, 6(6), 433-438. DOI: 10.1107/S0365110X53001277
    Wagholikar, S., & Patil, Y. (2022). Eliminating cyanide species from aqueous matrices: An overview on some physical-chemical and nano-based techniques. 2022 Interdisciplinary Research in Technology and Management (IRTM), 1-9.
    Wang, D.-Y., Wei, C.-Y., Lin, M.-C., Pan, C.-J., Chou, H.-L., Chen, H.-A., Gong, M., Wu, Y., Yuan, C., & Angell, M. (2017). Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications, 8. DOI: 10.1038/ncomms14283
    Wang, F., Cheong, J. Y., He, Q., Duan, G., He, S., Zhang, L., Zhao, Y., Kim, I.-D., & Jiang, S. (2021a). Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chemical Engineering Journal, 414, 128767. DOI: 10.1016/j.cej.2021.128767.
    Wang, H., Yan, T., Shen, J., Zhang, J., Shi, L., & Zhang, D. (2020a). Efficient removal of metal ions by capacitive deionization with straw waste derived graphitic porous carbon nanosheets. Environmental Science: Nano. DOI: 10.1039/C9EN01233H
    Wang, L., Liu, X., Wang, X., Yang, X., & Lu, L. (2011). Electrochemical capacitance study on Co3O4 nanowires for super capacitors application. Journal of Materials Science: Materials in Electronics, 22(6), 601-606.
    Wang, R., Sun, K., Zhang, Y., Qian, C., & Bao, W. (2022). Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 10(12), 6414-6441.
    Wang, X., Xu, J., Xu, M., Zhou, B., Liang, J., & Zhou, L. (2021b). High-efficient removal of arsenite by coagulation with titanium xerogel coagulant. Separation and Purification Technology, 258, 118047. DOI: 10.1016/j.seppur.2020.118047
    Wang, Y., Hao, J., Li, W., Zuo, X., Xiang, B., Qiang, Y., Zou, X., Tan, B., Hu, Q., & Chen, F. (2020b). Mn3O4/Co(OH)2 cactus-type nanoarrays for high-energy-density asymmetric supercapacitors. Journal of Materials Science, 55(2), 724-737.
    Wang, Y., Jiao, J. J., Zhu, S., & Li, Y. (2013a). Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer-aquitard system. Environmental pollution, 179, 160-166.
    Wang, Y., Sikora, S., Kim, H., Dubey, B., & Townsend, T. (2012). Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate. Waste management, 32(5), 925-932.
    Wang, Y., & Xia, Y. (2013b). Recent progress in supercapacitors: from materials design to system construction. Advanced materials, 25(37), 5336-5342.
    Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., Liu, K., & Jiang, S. (2021c). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56(1), 173-200.
    Weerasundara, L., Ok, Y.-S., & Bundschuh, J. (2021). Selective removal of arsenic in water: A critical review. Environmental Pollution, 268, 115668. DOI: 10.1016/j.envpol.2020.115668
    Wei, Q., Hu, Y., Wang, J., Ru, Q., Hou, X., Zhao, L., Yu, D. Y., San Hui, K., Yan, D., & Hui, K. N. (2020). Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry. Carbon, 170, 487-492.
    Weng, D., Duan, H., Hou, Y., Huo, J., Chen, L., Zhang, F., & Wang, J. (2020). Introduction of manganese based lithium-ion sieve-a review. Progress in Natural Science: Materials International, 30(2), 139-152.
    Wessling, M., Gendel, Y., & Rommerskirchen, A. (2018). Single module, flow-electrode apparatus and method for continous water desalination and ion separation by capacitive deionization. In: Google Patents.
    Widhiastuti, F., Fan, L., Paz-Ferreiro, J., & Chiang, K. (2022). Oxidative degradation of bisphenol A in municipal wastewater reverse osmosis concentrate (ROC) using ferrate (VI)/hydrogen peroxide. Process Safety and Environmental Protection, 163, 58-67.
    Wu, Q., Liang, D., Lu, S., Wang, H., Xiang, Y., Aurbach, D., Avraham, E., & Cohen, I. (2022a). Advances and perspectives in integrated membrane capacitive deionization for water desalination. Desalination, 542, 116043. DOI: 10.1016/j.desal.2022.116043
    Wu, W., Lin, Z., Shi, H.-Y., Lin, L., Yang, X., Song, Y., Liu, X.-X., & Sun, X. (2022b). Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries. Chemical Engineering Journal, 427, 131988. DOI: 10.1016/j.cej.2021.131988
    Wu, Z., Dong, J., Li, X., Zhao, X., Tan, W., Ji, C., & Zhang, Q. (2023). Tough polyimide composites synergistically reinforced by carbon nanofiber-grafted carbon fiber and rGO for improved heat dissipation and electromagnetic interference shielding. Journal of Materials Science & Technology.
    Xiang, C., Li, M., Zhi, M., Manivannan, A., & Wu, N. (2013). A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. Journal of Power Sources, 226, 65-70.
    Xiang, W., Zhang, X., Chen, K., Fang, J., He, F., Hu, X., Tsang, D. C., Ok, Y. S., & Gao, B. (2020). Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chemical Engineering Journal, 385, 123842. DOI: 10.1016/j.cej.2019.123842
    Xie, Z., Liu, Z., Tao, C., Li, C., & Chang, J. (2022). Production of electrolytic manganese metal using a new hyperchaotic circuit system. Journal of Materials Research and Technology, 18, 4804-4815.
    Xie, Z., Shang, X., Yang, J., Hu, B., Nie, P., Jiang, W., & Liu, J. (2020). 3D interconnected boron-and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization. Carbon, 158, 184-192.
    Xin, Y., Zhou, Z., Ming, Q., Sun, D., Han, J., Ye, X., Dai, S., Jiang, L.-M., Zhao, X., & An, Y. (2020). A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation. Journal of Hazardous Materials, 397, 122744. DOI: 10.1016/j.jhazmat.2020.122744
    Xing, W., Liang, J., Tang, W., He, D., Yan, M., Wang, X., Luo, Y., Tang, N., & Huang, M. (2020). Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 482, 114390. DOI: 10.1016/j.desal.2020.114390
    Xiong, Y., Yang, X., Liu, Y., Chen, X., Wang, G., Lu, B., Lin, G., & Huang, B. (2022a). Fabrication of phosphorus doping porous carbon derived from bagasse for highly-efficient removal of La3+ ions via capacitive deionization. Electrochimica Acta, 404, 139735. DOI: 10.1016/j.electacta.2021.139735
    Xiong, Y., Yu, F., & Ma, J. (2022b). Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization. Acta Phys.-Chim. Sin, 38, 2006037. DOI: 10.3866/PKU.WHXB202006037
    Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359-11364.
    Xu, D., Tong, Y., Yan, T., Shi, L., & Zhang, D. (2017). N, P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors. ACS Sustainable Chemistry & Engineering, 5(7), 5810-5819.
    Xu, X., Allah, A. E., Wang, C., Tan, H., Farghali, A. A., Khedr, M. H., Malgras, V., Yang, T., & Yamauchi, Y. (2019). Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chemical Engineering Journal, 362, 887-896.
    Xu, X., Chen, Y., Wan, P., Gasem, K., Wang, K., He, T., Adidharma, H., & Fan, M. (2016). Extraction of lithium with functionalized lithium ion-sieves. Progress in materials science, 84, 276-313.
    Xu, X., Yang, T., Zhang, Q., Xia, W., Ding, Z., Eid, K., Abdullah, A. M., Hossain, M. S. A., Zhang, S., & Tang, J. (2020). Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chemical Engineering Journal, 390, 124493. DOI: 10.1016/j.cej.2020.124493
    Yan, T., Xu, B., Zhang, J., Shi, L., & Zhang, D. (2018). Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC advances, 8(5), 2490-2497.
    Yan, W., Vasic, R., Frenkel, A. I., & Koel, B. E. (2012). Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environmental science & technology, 46(13), 7018-7026.
    Yang, B., Zhang, D., She, W., Wang, J., Gao, S., Wang, Y., & Wang, K. (2021a). Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage. Journal of Power Sources, 492, 229666. DOI: 10.1016/j.jpowsour.2021.229666
    Yang, J., Fu, L., Wu, F., Chen, X., Wu, C., & Wang, Q. (2022a). Recent developments in activated carbon catalysts based on pore size regulation in the application of Catalytic Ozonation. Catalysts, 12(10), 1085. DOI: 10.3390/catal12101085.
    Yang, J., Wang, L., Ma, Z., & Wei, M. (2019a). In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance. Journal of colloid and interface science, 534, 665-671.
    Yang, L., Hu, W., Chang, Z., Liu, T., Fang, D., Shao, P., Shi, H., & Luo, X. (2021b). Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends. Environment International, 152, 106512. DOI: 10.1016/j.envint.2021.106512
    Yang, S., Kim, H., Jeon, S.-i., Choi, J., Yeo, J.-g., Park, H.-r., Jin, J., & Kim, D. K. (2017). Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation. Desalination, 424, 110-121.
    Yang, S., Liu, G., Wang, J., Cui, L., & Chen, Y. (2019b). Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilibria, 493, 129-136.
    Yang, T.-C., Chang, F.-C., Wang, H. P., Wei, Y.-L., & Jou, C.-J. (2014). Photocatalytic splitting of seawater effected by (Ni-ZnO)@ C nanoreactors. Marine pollution bulletin, 85(2), 696-699.
    Yang, Z., Li, Y., & Ma, P. (2022b). Impact of sintering temperature on H2TiO3 lithium-ion sieves synthesised via the solid-phase method. Journal of Materials Science: Materials in Electronics, 33(29), 23128-23136.
    Yao, G., Zhang, N., Zhang, Y., & Zhou, T. (2021). Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: a review. Journal of Nanoparticle Research, 23(2), 1-27.
    Yasin, A. S., Mohamed, A. Y., Mohamed, I. M., Cho, D.-Y., Park, C. H., & Kim, C. S. (2019). Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization. Chemical Engineering Journal, 371, 166-181.
    Yi, H., Nakabayashi, K., Yoon, S.-H., & Miyawaki, J. (2021). Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 183, 735-742.
    Yoon, H., Lee, J., Kim, S.-R., Kang, J., Kim, S., Kim, C., & Yoon, J. (2016). Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control. Desalination, 392, 46-53.
    Younes, H., Ravaux, F., El Hadri, N., & Zou, L. (2019). Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization. Electrochimica Acta, 306, 1-8.
    Younes, H., & Zou, L. (2020). Asymmetric configuration of pseudocapacitive composite and rGO electrodes for enhanced capacitive deionization. Environmental Science: Water Research & Technology, 6(2), 392-403.
    Yu, F., Yang, Z., Cheng, Y., Xing, S., Wang, Y., & Ma, J. (2022). A comprehensive review on flow-electrode capacitive deionization: design, active material and environmental application. Separation and Purification Technology, 281, 119870. DOI: 10.1016/j.seppur.2021.119870
    Zadeh, A. E., Touati, K., Mulligan, C. N., McCutcheon, J. R., & Rahaman, M. S. (2022). Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review. Renewable and Sustainable Energy Reviews, 159, 112191. DOI: 10.1016/j.rser.2022.112191
    Zahid, M., Savla, N., Pandit, S., Thakur, V. K., Jung, S. P., Gupta, P. K., Prasad, R., & Marsili, E. (2022a). Microbial desalination cell: Desalination through conserving energy. Desalination, 521, 115381. DOI: 10.1016/j.desal.2021.115381
    Zahid, S., Khan, W. A., & Zahid, U. (2022b). Exergetic analysis of the humidification-dehumidificationdesalination cycle involving variation in top temperature. Applied thermal engineering, 215, 118998. DOI: 10.1016/j.applthermaleng.2022.118998
    Zarić, N. M., Braeuer, S., & Goessler, W. (2022). Arsenic speciation analysis in honey bees for environmental monitoring. Journal of Hazardous Materials, 432, 128614. DOI: 10.1016/j.jhazmat.2022.128614
    Zeng, J., Chen, L., Siwal, S., & Zhang, Q. (2019). Solvothermal sulfurization in a deep eutectic solvent: a novel route to synthesize Co-doped Ni3S2 nanosheets supported on Ni foam as active materials for ultrahigh-performance pseudocapacitors. Sustainable Energy & Fuels, 3(8), 1957-1965.
    Zgrzebnicki, M., Nair, V., Mitra, S., Kałamaga, A., Przepiórski, J., & Wrobel, R. J. (2022). N-doped activated carbon derived from furfuryl alcoho-development of porosity, properties, and adsorption of carbon dioxide and ethene. Chemical Engineering Journal, 427, 131709. DOI: 10.1016/j.cej.2021.131709
    Zha, K., Feng, C., Han, L., Li, H., Yan, T., Kuboon, S., Shi, L., & Zhang, D. (2020). Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study. Chemical Engineering Journal, 381, 122764. DOI: 10.1016/j.cej.2019.122764
    Zhang, B., Boretti, A., & Castelletto, S. (2022a). MXene pseudocapacitive electrode material for capacitive deionization. Chemical Engineering Journal, 134959.
    Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: a review. Water Research, 128, 314-330.
    Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2019a). Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 299, 727-735.
    Zhang, C., Wang, X., Wang, H., Wu, X., & Shen, J. (2019b). A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination, 458, 45-53.
    Zhang, H., Shao, Y., Han, X., & Chang, H.-L. (2022b). A road towards ecological development in China: The nexus between green investment, natural resources, green technology innovation, and economic growth. Resources Policy, 77, 102746. DOI: 10.1016/j.resourpol.2022.102746
    Zhang, H., Tian, J., Cui, X., Li, J., & Zhu, Z. (2023). Highly mesoporous carbon nanofiber electrodes with ultrahigh specific surface area for efficient capacitive deionization. Carbon, 201, 920-929.
    Zhang, H., Yang, Y., Xu, H., Wang, L., Lu, X., & He, X. (2022c). Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, 4(4), e12228. DOI: 10.1002/inf2.12228
    Zhang, J., Liu, S., Liu, H., Zhou, S., Ding, R., Wei, S., Wang, Z., & Lu, X. (2022d). Methyl-functionalized hydrangea-like vanadium pentoxide cathode for aqueous zinc ion batteries with high-rate and long-term cycling stability. Journal of Alloys and Compounds, 920, 166010. DOI: 10.1016/j.jallcom.2022.166010
    Zhang, J., Yan, T., Fang, J., Shen, J., Shi, L., & Zhang, D. (2020a). Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal-organic frameworks. Environmental Science: Nano. DOI: 10.1039/C9EN01216H
    Zhang, L., Song, J.-Y., Zou, J.-Y., & Wang, N. (2008). High voltage super-capacitors for energy storage devices applications. Paper presented at the 2008 14th Symposium on Electromagnetic Launch Technology.
    Zhang, L., & Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of cleaner Production, 127, 19-36.
    Zhang, M., Li, Z., Haggblom, M. M., Young, L., He, Z., Li, F., Xu, R., Sun, X., & Sun, W. (2020b). Characterization of nitrate-dependent As(III)-oxidizing communities in arsenic-contaminated soil and investigation of their metabolic potentials by the combination of DNA-stable isotope probing and metagenomics. Environmental science & technology, 54(12), 7366-7377.
    Zhang, Q.-H., Sun, S., Li, S., Jiang, H., & Yu, J.-G. (2007). Adsorption of lithium ions on novel nanocrystal MnO2. Chemical Engineering Science, 62(18-20), 4869-4874.
    Zhang, Q., Yan, B., Feng, L., Zheng, J., You, B., Chen, J., Zhao, X., Zhang, C., Jiang, S., & He, S. (2022e). Progress on organic potassium salts involved synthesis of porous carbon nanomaterials: Microstructure engineering for advanced supercapacitors. Nanoscale.
    Zhang, S., Pu, Q., Liu, P., Sun, Q., & Su, Z. (2002). Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Analytica Chimica Acta, 452(2), 223-230.
    Zhang, X., Li, Y., Yang, Z., Yang, P., Wang, J., Shi, M., Yu, F., & Ma, J. (2022f). Industrially-prepared carbon aerogel for excellent fluoride removal by membrane capacitive deionization from brackish groundwaters. Separation and Purification Technology, 297, 121510. DOI: 10.1016/j.seppur.2022.121510
    Zhang, X., Yang, S., Lu, W., Lei, D., Tian, Y., Guo, M., Mi, P., Qu, N., & Zhao, Y. (2021). MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 592, 95-102.
    Zhang, Y., Cui, M., Wang, J., Liu, X., & Lyu, X. (2022g). A review of gold extraction using alternatives to cyanide: focus on current status and future prospects of the novel eco-friendly synthetic gold lixiviants. Minerals Engineering, 176, 107336. DOI: 10.1016/j.mineng.2021.107336
    Zhang, Y., Deng, J., Qin, B., Zhu, G., Zhang, Y., Jeppesen, E., & Tong, Y. (2022h). Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundamental Research. DOI: 10.1016/j.fmre.2022.01.035
    Zhao, F., Chen, S., Xiang, H., Gao, T., Wang, D., Wei, D., Sillanpää, M., Ke, Y., & Tang, C.-J. (2022). Selectively capacitive recovery of rare earth elements from aqueous solution onto Lewis base sites of pyrrolic-N doped activated carbon electrodes. Carbon, 197, 282-291.
    Zhao, H., Zhang, X., Li, X., Ding, B., & Cheng, F. (2018). Research on actual performance and energy recovery characteristic of capacitive deionization regeneration method for absorption air-conditioning system. Energy Conversion and Management, 171, 1549-1559.
    Zhao, L. F., Hu, Z., Lai, W. H., Tao, Y., Peng, J., Miao, Z. C., Wang, Y. X., Chou, S. L., Liu, H. K., & Dou, S. X. (2021). Hard carbon anodes: fundamental understanding and commercial perspectives for Na‐ion batteries beyond Li‐ion and K‐ion counterparts. Advanced Energy Materials, 11(1), 2002704. DOI: 10.1002/aenm.202002704
    Zhao, N., Fan, H., Zhang, M., Ma, J., Wang, C., Yadav, A. K., Li, H., Jiang, X., & Cao, X. (2020a). Beyond intercalation-based supercapacitors: The electrochemical oxidation from Mn3O4 to Li4Mn5O12 in Li2SO4 electrolyte. Nano Energy, 71, 104626. DOI: 10.1016/j.nanoen.2020.104626
    Zhao, R., Biesheuvel, P., & Van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 5(11), 9520-9527.
    Zhao, R., Novak, J. T., & Goldsmith, C. D. (2013). Treatment of organic matter and methylated arsenic in landfill biogas condensate. Waste management, 33(5), 1207-1214.
    Zhao, S., Li, M., Wu, X., Yu, S., Zhang, W., Luo, J., Wang, J., Geng, Y., Gou, Q., & Sun, K. (2020b). Graphene-based free-standing bendable films: designs, fabrications, and applications. Materials Today Advances, 6, 100060. DOI: 10.1016/j.mtadv.2020.100060
    Zhao, X., Wei, H., Zhao, H., Wang, Y., & Tang, N. (2020c). Electrode materials for capacitive deionization: a review. Journal of Electroanalytical Chemistry, 873, 114416. DOI: 10.1016/j.jelechem.2020.114416
    Zheng, J., Zhang, K., Liu, Y., & Wang, Y. (2019). Fatal acute arsenic poisoning by external use of realgar: case report and 30 years literature retrospective study in China. Forensic science international, 300, 24-30.
    Zheng, J., Zhao, R., Uliana, A. A., Liu, Y., de Donnea, D., Zhang, X., Xu, D., Gao, Q., Jin, P., & Liu, Y. (2022). Separation of textile wastewater using a highly permeable resveratrol-based loose nanofiltration membrane with excellent anti-fouling performance. Chemical Engineering Journal, 434, 134705. DOI: 10.1016/j.cej.2022.134705
    Zhou, J., Gan, Q., & Tao, Y. (2022). Electro-osmotic permeability model based on ions migration. Acta Geotechnica, 1-15.
    Zhou, L., Lin, X., Huang, T., & Yu, A. (2014). Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries. Journal of Materials Chemistry A, 2(14), 5117-5123.
    Zhu, J., Wu, Q., & Li, J. (2020). Review and prospect of Mn3O4‐based composite materials for supercapacitor electrodes. ChemistrySelect, 5(33), 10407-10423.
    Zignani, S. C., Faro, M. L., Carbone, A., Italiano, C., Trocino, S., Monforte, G., & Aricò, A. (2022). Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochimica Acta, 413, 140078. DOI: 10.1016/j.electacta.2022.140078
    Zornitta, R. L., & Ruotolo, L. A. (2018). Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations. Chemical Engineering Journal, 332, 33-41.
    Zou, R., Qian, M., Wang, C., Mateo, W., Wang, Y., Dai, L., Lin, X., Zhao, Y., Huo, E., & Wang, L. (2022). Biochar: From by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. Chemical Engineering Journal, 135972. DOI: 10.1016/j.cej.2022.135972
    Zubrik, A., Matik, M., Hredzák, S., Lovás, M., Danková, Z., Kováčová, M., & Briančin, J. (2017). Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. Journal of Cleaner Production, 143, 643-653.

    無法下載圖示 校內:2028-04-23公開
    校外:2028-04-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE