簡易檢索 / 詳目顯示

研究生: 洪世敏
Hung, Shih-Min
論文名稱: 量子私密比較
Quantum Private Comparison
指導教授: 黃宗立
Hwang, Tzone-Lih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 29
中文關鍵詞: 量子密碼學量子私密比較第三方部份誠實近乎不誠實個別不誠實陌生人環境
外文關鍵詞: Quantum cryptography, Quantum private comparison, Third-party, Semi-honest, Almost dishonest, Individually dishonest, The stranger environment
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個新的安全性問題,其存在於各種現有的量子私密比較協定中。一個惡意的第三方可以藉由公佈偽造的比較結果,使得參與者最終無法獲得正確的比較資訊。為了解決此問題,本篇論文同時提出一個新的量子私密比較協定,利用兩個第三方達到互相監督的目的,如果有一個第三方公佈偽造的比較結果,則另一個第三方可以偵測出錯誤。除此之外,現有的量子私密比較協定皆需要參與者互相認識來達到比較的目的,因此無法協助陌生人們互相比較私密訊息,而由於本篇論文所提出的協定存在兩個第三方,因此可以透過兩個第三方的協助達到陌生人們互相比較私密訊息的目的。

    This thesis explores a new security problem existing in various state-of-the-art QPC protocols, where a malicious TP announces fake comparison (or intermediate) results. In this case, the participants could eventually be led to a wrong direction and the QPC will become fraudulent. In order to resolve this problem, a new level of trustworthiness for TP is defined and a new QPC protocol is proposed, where a second TP is introduced to monitor the first one. Once a TP announces a fake comparison (or intermediate) result, participants can detect the fraud immediately. Besides, due to the introduction of the second TP, the proposed protocol allows strangers to compare their secrets privately, whereas the state-of-the-art QPCs require the involved clients to know each other before running the protocol.

    中文摘要 i Abstract ii 致謝 iii Content iv List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and Contribution 2 1.3 Thesis Structure 5 Chapter 2 Preliminaries 6 2.1 The Properties of Single Photon 6 2.2 The Properties of Entangled States 8 2.2.1 Bell State 8 2.2.2 GHZ State 9 Chapter 3 Zhang et al.’s Protocol and Problems 12 3.1 Zhang et al.’s Protocol 12 3.2 The Problems of Zhang et al.’s Protocol 14 Chapter 4 Multiparty QPC Protocol with Individually Dishonest TPs for Strangers 15 4.1 The Proposed Protocol 15 4.2 Stranger Environment 19 4.3 Who is Telling a Lie 20 4.4 Security Analysis 21 4.4.1 Outsider Attack 21 4.4.2 Insider Attack 22 Chapter 5 Conclusions 25 Bibliography 26

    1. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. 1994. IEEE.
    2. Grover, L.K., Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997. 79(2): p. 325-328.
    3. Wootters, W.K. and Zurek, W.H., A Single Quantum Cannot Be Cloned. Nature, 1982. 299(5886): p. 802-803.
    4. Bennett, C.H. and Brassard, G., Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 1984. 560: p. 7-11.
    5. Yang, Y.G. and Wen, Q.Y., An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. Journal of Physics a-Mathematical and Theoretical, 2009. 42(5).
    6. Deng, F.G., Li, X.H., Zhou, H.Y., and Zhang, Z.J., Improving the security of multiparty quantum secret sharing against Trojan horse attack. Physical Review A, 2005. 72(4).
    7. Cai, Q.Y., Eavesdropping on the two-way quantum communication protocols with invisible photons. Physics Letters A, 2006. 351(1-2): p. 23-25.
    8. Li, X.H., Deng, F.G., and Zhou, H.Y., Improving the security of secure direct communication based on the secret transmitting order of particles. Physical Review A, 2006. 74(5).
    9. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., and Yang, Y.X., An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Optics Communications, 2010. 283(7): p. 1561-1565.
    10. Jia, H.Y., Wen, Q.Y., Song, T.T., and Gao, F., Quantum protocol for millionaire problem. Optics Communications, 2011. 284(1): p. 545-549.
    11. Liu, W., Wang, Y.B., and Jiang, Z.T., An efficient protocol for the quantum private comparison of equality with W state. Optics Communications, 2011. 284(12): p. 3160-3163.
    12. Liu, W., Wang, Y.B., Jiang, Z.T., and Cao, Y.Z., A Protocol for the Quantum Private Comparison of Equality with chi-Type State. International Journal of Theoretical Physics, 2012. 51(1): p. 69-77.
    13. Tseng, H.Y., Lin, J., and Hwang, T., New quantum private comparison protocol using EPR pairs. Quantum Information Processing, 2012. 11(2): p. 373-384.
    14. Chen, X.B., Su, Y., Niu, X.X., and Yang, Y.X., Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Information Processing, 2014. 13(1): p. 101-112.
    15. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., and Sun, Y., Information leak in Liu et al.'s quantum private comparison and a new protocol. European Physical Journal D, 2012. 66(4).
    16. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., and Sun, Y., Quantum private comparison against decoherence noise. Quantum Information Processing, 2013. 12(6): p. 2191-2205.
    17. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., and Wen, Q.Y., Efficient quantum private comparison employing single photons and collective detection. Quantum Information Processing, 2013. 12(2): p. 887-897.
    18. Liu, W. and Wang, Y.B., Quantum Private Comparison Based on GHZ Entangled States. International Journal of Theoretical Physics, 2012. 51(11): p. 3596-3604.
    19. Yang, Y.G., Xia, J., Jia, X., Shi, L., and Zhang, H., New Quantum Private Comparison Protocol without Entanglement. International Journal of Quantum Information, 2012. 10(6).
    20. Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., and Yang, Y.T., Fault-Tolerate Quantum Private Comparison Based on GHZ States and ECC. International Journal of Theoretical Physics, 2013. 52(8): p. 2818-2825.
    21. Liu, X.T., Zhao, J.J., Wang, J., and Tang, C.J., Cryptanalysis of the secure quantum private comparison protocol. Physica Scripta, 2013. 87(6).
    22. Wang, C., Xu, G., and Yang, Y.X., Cryptanalysis and Improvements for the Quantum Private Comparison Protocol Using Epr Pairs. International Journal of Quantum Information, 2013. 11(4).
    23. Yang, Y.G., Xia, J., Jia, X., and Zhang, H., Comment on quantum private comparison protocols with a semi-honest third party. Quantum Information Processing, 2013. 12(2): p. 877-885.
    24. Zhang, W.W. and Zhang, K.J., Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Information Processing, 2013. 12(5): p. 1981-1990.
    25. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., and Wen, Q.Y., Quantum Private Comparison Protocol with the Random Rotation. International Journal of Theoretical Physics, 2013. 52(9): p. 3212-3219.
    26. Liu, W., Wang, Y.B., and Cui, W., Quantum Private Comparison Protocol Based on Bell Entangled States. Communications in Theoretical Physics, 2012. 57(4): p. 583-588.
    27. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., and Cui, W., New Quantum Private Comparison Protocol Using X-Type State. International Journal of Theoretical Physics, 2012. 51(6): p. 1953-1960.
    28. Chang, Y.J., Tsai, C.W., and Hwang, T., Multi-user private comparison protocol using GHZ class states. Quantum Information Processing, 2013. 12(2): p. 1077-1088.
    29. Liu, W., Wang, Y.B., and Wang, X.M., Multi-party Quantum Private Comparison Protocol Using d-Dimensional Basis States Without Entanglement Swapping. International Journal of Theoretical Physics, 2014. 53(4): p. 1085-1091.
    30. Lo, H.K., Insecurity of quantum secure computations. Physical Review A, 1997. 56(2): p. 1154-1162.
    31. Hwang, T., Luo, Y.P., Yang, C.W., and Lin, T.H., Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants. Quantum Information Processing, 2014. 13(4): p. 925-933.
    32. Luo, Y.P. and Hwang, T., Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Information Processing, 2014. 13(1): p. 113-120.
    33. Gao, F., Guo, F.Z., Wen, Q.Y., and Zhu, F.C., Comment on "Experimental Demonstration of a Quantum Protocol for Byzantine Agreement and Liar Detection". Physical Review Letters, 2008. 101(20).
    34. Gao, F., Lin, S., Wen, Q.Y., and Zhu, F.C., A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chinese Physics Letters, 2008. 25(5): p. 1561-1563.
    35. Gao, F., Qin, S.J., and Wen, Q.Y., A simple participant attack on the Bradler-Dusek protocol. Quantum Information & Computation, 2007. 7(4): p. 329-334.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE