| 研究生: |
黃筱珊 Huang, Siao-Shan |
|---|---|
| 論文名稱: |
低電壓高密度之氧化鉿鋯鐵電非揮發性靜態隨機存取記憶體 Low-Voltage and High-Density Non-Volatile SRAM with Hafnium Zirconium Oxide Ferroelectric Memory |
| 指導教授: |
盧達生
Lu, Darsen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 非揮發性靜態隨機存取記憶體 、鐵電記憶體 、氧化鉿鋯 、低電壓 |
| 外文關鍵詞: | Nv-SRAM, Ferroelectric memory, Hafnium Zirconium Oxide, Normally-off Computing, Low Voltage |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著物聯網以及人工智慧的快速發展,龐大資料量需要運算。為了解決遠端傳輸、用戶隱私等問題以及加快人工智慧運算的速度,邊緣運算裝置的需求也逐漸上升。其中低功耗、低延遲的需求對邊緣裝置尤為重要。由記憶體組成的記憶體陣列,可將計算與儲存同時進行達成「記憶體內運算」,並具備平行化處理大量矩陣運算的能力, 成為近年來熱門的研究項目。
記憶體陣列的選擇中,隨機存取記憶體具有可高速運算及製程穩定的優勢,然而主要問題仍在如何降低其待機時漏電流造成的功耗。鐵電非揮發性隨機存取記憶體的設計在現有的製程步驟上,後端製程加上鐵電電容、使用電壓操作的方式記憶,讓原本無法關閉、需要待機的隨機存取記憶體,在重新開啟電源後可順利快速回復資料。
本文使用L-K以及NLS兩種鐵電等效模型,依其計算理論萃取實際量測的鐵電電容特性參數,並擇優以模擬Nv-SRAM元件,證明在低電壓時選擇適當的操作方式,使得Nv-SRAM有更好的寫入及資料回復的穩定性,並且此操作方式,元件面積縮小時依然有良好的表現,達成邊緣運算裝置微縮的需求。
With the rapid development of the Internet of Things (IoT) and artificial intelligence (AI) in recent years, fast computation of huge bulks of data is required. To solve issues such as remote-end transmission, user privacy, etc., and to increase the speed of AI computation, there is a rising demand for edge-computing devices, and low power consumption and low delay requirements for edge-computing devices have become more and more important. As memory arrays composed of memories can perform computation simultaneously with storage to achieve computing-in-memory (CIM) and are capable of parallel processing of bulk matrix computation, they have become popular topics of research in recent years.
Of various memory array options, static-random-access-memory (SRAM) has the advantages of fast computation and stable processing. However, there is a major problem with SRAM which lies in how undesirable power consumption caused by standby leakage current can be reduced. For the design of ferroelectric non-volatile SRAMs in existing processing methods, a ferroelectric capacitor is employed in backend process, and the memory function is achieved by voltage operation, so that SRAMs which originally have to be in a standby mode can smoothly recover data after power is turned on again.
In this study, two kinds of ferroelectric compact models, L-K model and NLS model, were used and measurements of ferroelectric capacitor characteristic parameters were extracted based on their calculation theories. The one with better time response was selected to perform simulation of Nv-SRAM cell to demonstrate that by selecting an appropriate operating method during low voltage, Nv-SRAM has better write and data recovery stability, and that such operating method still has a satisfactory performance with a reduced size element, thereby allowing for scaling of edge-computing devices.
[1] Hermann Eul, "ICs for mobile multimedia communications," 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2006, pp. 21-39.
[2] Yoonho Ahn, Jong Yeog Son, “Imprint phenomenon of ferroelectric switching characteristics in BaTiO3/PbTiO3 multilayer thin films,” Journal of Alloys and Compounds, Volume 891, 2022, 162088, ISSN 0925-8388.
[3] F. Yang, G. Hu, B. Xu, W. Wu, C. Yang and H. Wu, "Statistical mechanical origin of hysteresis in ferroelectrics", Journal of Applied Physics, vol. 112, no. 3, p. 034113, 2012. Available: 10.1063/1.4745054.
[4] J. Ocker, VLSI-TSA Tutorial (2018)
[5] A. N. Kolmogorov, "On the statistical theory of the crystallization of metals", Izvestiya Akademii Nauk Ser. Math., vol. 1, no. 3, pp. 355-359, 1937.
[6] M. Avrami, "Kinetics of phase change. I General theory", J. Chem. Phys., vol. 7, no. 12, pp. 1103-1112, Dec. 1939.
[7] Yoshihiro Ishibashi, "A Model of Polarization Reversal in Ferroelectrics", Journal of the Physical Society of Japan, 59, 4148-4154 (1990) 10.1143/JPSJ.59.4148
[8] C. Alessandri, P. Pandey, A. Abusleme and A. Seabaugh, "Switching Dynamics of Ferroelectric Zr-Doped HfO2," in IEEE Electron Device Letters, vol. 39, no. 11, pp. 1780-1783, Nov. 2018, doi: 10.1109/LED.2018.2872124.
[9] T.K. Song, "Landau-Khalatnikov Simulations for Ferroelectric Switching in Ferroelectric Random Access Memory Applicatio," in J. Korean Phy. Soc. 2005; 46(1): 5
[10] Y. Ahn and J. Son, "Imprint phenomenon of ferroelectric switching characteristics in BaTiO3/PbTiO3 multilayer thin films", Journal of Alloys and Compounds, vol. 891, p. 162088, 2021. Available: 10.1016/j.jallcom.2021.162088.
[11] D. Antoniadis, T. Kim and J. A. del Alamo, "Nucleation-Limited Switching Dynamics Model for Efficient Ferroelectrics Circuit Simulation," in IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 395-399, Jan. 2022, doi: 10.1109/TED.2021.3131290.
[12] Sergey Zhukov, Yuri A. Genenko, Ofer Hirsch, Julia Glaum, Torsten Granzow, and Heinz von Seggern, “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism”, Phys. Rev. B 82, 014109 – Published 19 July 2010
[13] Ma, X., 2021. GitHub - boltma/Scalable-FeFET. [online] GitHub. Available at: <https://github.com/boltma/Scalable-FeFET> [Accessed 30 January 2022].
[14] Singh, J., Mohanty, S. and Pradhan, D., 2013. Robust SRAM Designs and Analysis. New York, NY: Springer New York.
[15] W. -X. You, P. Su and C. Hu, "A New 8T Hybrid Nonvolatile SRAM With Ferroelectric FET," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 171-175, 2020, doi: 10.1109/JEDS.2020.2972319.
[16] H. Jiang, O. Li, W. Chen and T. P. Ma, "Dual-Storage-Port Nonvolatile SRAM Based 3D Selector-Free Cross-Point Memory," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 935-938, 2020, doi: 10.1109/JEDS.2020.3019024.
[17] Y. -C. Luo, S. Datta and S. Yu, "Three-dimensional (3D) Non-volatile SRAM with IWO Transistor and HZO Ferroelectric Capacitor," 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2021, pp. 1-2, doi: 10.1109/VLSI-TSA51926.2021.9440083.
[18] C. Liu et al., "A 7T1C Nonvolatile SRAM Based on Ferroelectric HfO2 Capacitor for Ultralow Power Applications," 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 2020, pp. 1-3, doi: 10.1109/ICSICT49897.2020.9278187.
[19] M. Kobayashi, N. Ueyama and T. Hiramoto, "A nonvolatile SRAM integrated with ferroelectric HfO2 capacitor for da-off and ultralow power IoT application," 2017 Symposium on VLSI Technology, 2017, pp. T156-T157, doi: 10.23919/VLSIT.2017.7998161.
[20] T. Miwa et al., "NV-SRAM: a nonvolatile SRAM with backup ferroelectric capacitors," in IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 522-527, March 2001, doi: 10.1109/4.910492.
[21] M. Kobayashi, N. Ueyama, K. Jang and T. Hiramoto, "Experimental Demonstration of a Nonvolatile SRAM With Ferroelectric HfO2 Capacitor for Normally Off Application," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 280-285, 2018, doi: 10.1109/JEDS.2018.2800090.
[22] T. Miwa et al., "A 512 Kbit low-voltage NV-SRAM with the size of a conventional SRAM," 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185), 2001, pp. 129-132, doi: 10.1109/VLSIC.2001.934217.
[23] S. Masui, T. Ninomiya, M. Oura, W. Yokozeki, K. Mukaida and S. Kawashima, "A ferroelectric memory-based secure dynamically programmable gate array," in IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 715-725, May 2003, doi: 10.1109/JSSC.2003.810034.
[24] K. Takeuchi, M. Kobayashi and T. Hiramoto, "A Feasibility Study on Ferroelectric Shadow SRAMs Using a New Variability Design Scheme," 2019 Electron Devices Technology and Manufacturing Conference (EDTM), 2019, pp. 109-111, doi: 10.1109/EDTM.2019.8731077.
[25] X.J. Lou, "Statistical switching kinetics in ferroelectrics," arXiv:0807.2494 [physics.data-an], 2008
[26] X. L, M. Si, X. S, M. A. C, H. W and P. D. Ye pp. T44-T45, doi: 10.23919/VLSIT.2019.8776548
[27] K. Ni, M. Jerry, J. A. Smith and S. Datta, "A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs," 2018 IEEE Symposium on VLSI Technology, 2018, pp. 131-132, doi: 10.1109/VLSIT.2018.8510622.
[28] R. Mohanan, “What is edge computing? components, examples, and best practices,” Toolbox, 07-Jan-2022. [Online]. Available: https://www.toolbox.com/tech/edge-computing/articles/what-is-edge-computing/#lg=1&slide=0. [Accessed: 03-Feb-2022].
[29] S. Yin, et al.,"Vesti: Energy-Efficient In-Memory Computing Accelerator for Deep Neural Networks" in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 01, pp. 48-61, 2020. doi: 10.1109/TVLSI.2019.2940649
[30] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs With Steep Subthreshold Swing," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 429-434, 2020.
[31] NVIDIA Developer Blog. 2019. Introducing Jetson Xavier NX, the World’s Smallest AI Supercomputer | NVIDIA Developer Blog. [online] Available at: <https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/> [Accessed 7 February 2022].
[32] A Verilog-A Compact Model for Negative Capacitance FET manual, Purdue University, 2016
[33] Wang, C. W., Ku, H., Chiu, C. Y., De, S., Qiu, B. H., Shin, C., & Lu, D. (2020). Compact model for PZT ferroelectric capacitors with voltage dependent switching behavior. Semiconductor Science and Technology, 35(5), [055033]. https://doi.org/10.1088/1361-6641/ab7c79
[34] Sourav De, Bo-Han QiuBo-Han Qiu , Wei-Xuan Bu, Mohammad Aftab Baig, Po-Jung Sung, Chun-Jung Su, Yao-Jen Lee, and Darsen D. Lu*,” Uniform Crystal Formation and Electrical Variability Reduction in Hafnium-Oxide-Based Ferroelectric Memory by Thermal Engineering,” ACS Appl. Electron. Mater. 2021, 3, 2, 619–628
[35] F. Preisach, Z. Phys. 94, 277 (1935)
[36] Liu, Y., Wang, P., Lin, L. and Wang, J., 2021. Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications. Journal of the European Ceramic Society, 41(6), pp.3387-3396.
[37] Yi-Ting Wu, “FinFETs and Gate All Around Transistor Designs in Output Stage and Static Random Access Memory,” Jan 2022
校內:2027-01-27公開