簡易檢索 / 詳目顯示

研究生: 錢俊儒
Chien, Chun-Ju
論文名稱: 重疊標準化時間序列變異數估計量之漸近卡方分配及Student's t分配
Asymptotic Chi-Square and Student's t Distributions for Overlapping Standardized Time Series Variance Estimator
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 41
中文關鍵詞: 穩態系統模擬輸出分析重疊分批標準化時間序列數值法
外文關鍵詞: Simulation Output Analysis, Overlapping Batch, Standardized Time Series, Numerical Method
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在單一長回合 (one long run) 的穩態系統模擬中,由於觀察值之間幾乎不為獨立同分配,若使用樣本變異數作為母體變異數τ的估計量會產生偏誤,於是許多學者提出不同的方法估計τ,常見的方法為依序將觀察值不重複(無重疊分批)或重複(重疊分批)分入相鄰的批次中,利用批次的統計量估計 τ,而大部分使用重疊分批求得的估計量,其表現皆比使用無重疊分批得到的估計量好,但由於重疊分批使批次之間擁有相關性,因此與變異數估計量相關的抽樣分配不服從卡方分配及 Student’s t 分配,所以在進行區間估計時使用卡方分配或 Student’s t 分配會產生偏誤,除非能找出與該估計量相關的抽樣分配。
    本研究利用泛函中央極限定理(functional central limit theorem; FCLT)及連續映射定理(continuous mapping theorem; CMT)推導重疊標準化時間序列變異數估計量(overlapping standardized time series variance estimator; OSTS estimator)之漸近分配:OSTS-χ2分配及OSTS-t分配,並搭配數值法 (Numerical Method) 產生建立信區間時所需的OSTS-χ2分配表及OSTS-t分配表;產生分配表的基本方法為蒙地卡羅法 (Monte Carlo Method) ,而本研究使用的數值法的概念為將漸近分配利用線性組合表示並搭配拉普拉斯變換 (Laplace Transforms) ,隨後即可求得特定分位數的值,相較於蒙地卡羅法是較為省時且兼具精準的方法。
    經由自迴歸模型(autoregressive model)的實例驗證,發現使用OSTS變異數估計量搭配本研究的 OSTS-χ 2 分配表及 OSTS-t 分配表,在批次內觀察值數目為足夠大的條件下,建立母體參數的信賴區間並不會產生偏誤,除了再次驗證 OSTS 變異數估計量的良好表現,也說明即使重疊分批的變異數估計方法不遵守統計的邏輯,但若能求得該估計量的分配,它會是個表現很好的估計量。

    Batching is a classic approach for estimating the variance of the sample mean obtained from a stationary data process. Nonoverlapping batch means (NBM) estimator has long been the most-common foundation for statistical inference. Overlapping batch means (OBM) estimator, despite their inherent statistical efficiency have not been a popular basis for statistical inference, primarily because their dependence makes the classical χ 2 and Student’s t coefficients inappropriate. Overlapping standardized time series (OSTS) estimator, which is more efficient than OBM estimator, similarly creates dependence that negate the use of the classical sampling distributions; without a statistical-inference foundation, use of the OSTS estimator of the standard error languishes. This study is intended to provide a foundation for OSTS statistical inference by defining the OSTS-χ 2 and OSTS-t distributions, analogous to the classical χ2 and Student’s t distributions. We develop an eigenvalue-based numerical algorithm for computing the distributions’ cumulative probabilities, which we use to present a table of quantile values for each OSTS distribution. The experimental results show that when the value of the batch size is chosen large enough, we closely approximated the distributions’ quantile values with a numerical method that uses eigenvalues to reflect the covariances of the overlapping batch areas. Access to these distribution quantiles simplifies and improves statistical inference based on the OSTS estimator of the sample-mean’s standard error.

    摘 要 i 英 文 延 伸 摘 要 ii 誌 謝 vii 目 錄 viii 表 目 錄 x 圖 目 錄 xi 第 一 章 緒 論 1 1.1 研究背景與動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第 二 章 文 獻 探 討 4 2.1 模擬輸出分析(Simulation Output Analysis) . . . . . . . . . . . . . . . . 4 2.2 分批方法(Batched Method) . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 標準化時間序列(Standardized Time Series) . . . . . . . . . . . . . . . . 8 2.4 常用的批次估計量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 批次平均估計量(Batch Means Estimator) . . . . . . . . . . . . 10 2.4.2 批次面積估計量(Batched Area Estimator) . . . . . . . . . . . . 12 2.4.3 批次 Cramér-von Mises 估計量(Batched CvM Estimator) . . . . 13 2.4.4 估計量表現之比較 . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 第 三 章 研 究 方 法 17 3.1 OSTS 估計量之定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 OSTS 估計量之漸近分配 . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 OSTS 批次之間的漸近共變異數 . . . . . . . . . . . . . . . . . . . . . 20 3.4 數值法:產出 OSTS 分配表 . . . . . . . . . . . . . . . . . . . . . . . . 25 第 四 章 實 驗 情 境 與 分 析 32 4.1 實驗情境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 實驗結果及分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 第 五 章 結 論 與 未 來 研 究 方 向 37 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 未來研究方向 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 外 文 參 考 文 獻 39

    [1] Abate, J., & Whitt, W. (1995). Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on Computing, 7(1), 38-43.
    [2] Alexopoulos, C., Argon, N.T., Goldsman, D., & Tokol, G. (2004). Overlapping variance estimators for simulation. In Proceedings of the 2004 Winter Simulation Con-ference, Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A., (eds), Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 737-745.
    [3] Alexopoulos, C., Argon, N.T., Goldsman, D., Tokol, G., & Wilson, J.R. (2007a). Overlapping variance estimators for simulation. Operations Research, 55(6), 1090-1103.
    [4] Alexopoulos, C., Argon, N.T., Goldsman, D., Steiger, N.M., Tokol, G., & Wilson, J.R. (2007b). Efficient computation of overlapping variance estimators for simulation. INFORMS Journal on Computing, 19(3), 314-327.
    [5] Alexopoulos, C., Goldsman, D., & Serfozo, R.F. (2006). Stationary processes: Statistical estimation. In Balakrishnan, N., Read, C.B., & Vidakovic, B. (eds), Encyclopedia of Statistical Sciences, Vol. 12, 2nd ed. Wiley Interscience, Hoboken, NewJersey, 7991-8006.
    [6] Alexopoulos, C., Goldsman, D., Tang, P., & Wilson, J.R. (2016). SPSTS: A sequential procedure for estimating the steady-state mean using standardized time series. IIE Transactions, 48(9), 864-880.
    [7] Billingsley, P. (1968). Convergence of Probability Measures. New York: John Wiley & Sons.
    [8] Bischak, D., Kelton, W.D., & Pollock, S.M. (1993). Weighted batch means for confidence intervals in steady-state simulation. Management Science, 39(8), 1002-1019.
    [9] Conway, R.W. (1963). Some tactical problems in digital simulation. Management Science, 10(1), 47-61.
    [10] Glynn, P.W., & Iglehart, D.L. (1990). Simulation output analysis using standardized time series. Mathematics of Operations Research, 15(1), 1-16.
    [11] Goldsman, D., & Schruben, L. (1990). New confidence interval estimators using standardized time series. Management Science, 36(3), 393-397.
    [12] Goldsman, D., Kang, K., & Seila, A.F. (1999). Cramér-von Mises variance estimators for simulation. Operations Research, 47(2), 299-309.
    [13] Goldsman, D., Meketon, M., & Schruben, L. (1990). Properties of standardized time series weighted area variance estimators. Management Science, 36(5), 602-612.
    [14] Law, A.M., & Kelton, W.D. (1984). Confidence intervals for steady-stat esimulation,I:Asurveyoffixedsamplesizeprocedures.OperationsResearch, 32(6), 1221-1239.
    [15] Mechanic, H., & McKay, W. (1966a). Confidence intervals for averages of dependent data in simulations, I. Technical report ASDD 17-201, Advanced systems development division, IBM corporation, Yorktown Heights, New York.
    [16] Mechanic, H., & McKay, W. (1966b). Confidence intervals for averages of dependent data in simulations, II. Technical report ASDD 17-202, Advanced systems development division, IBM corporation, Yorktown Heights, New York.
    [17] Meketon, M.S., & Schmeiser, B.M. (1984). Overlapping batch means: Something for nothing? In Proceedings of the 1984 Winter Simualation Conference, Sheppard, S., Pooch, U., & Pegden, D., (eds), Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 227-230.
    [18] Moran, P.A.P., (1975). The estimation of standard errors in Monte Carlo simulation experiments. Biometrika, 62(1), 1-4.
    [19] Sargent, R.G., Kang, K., & Goldsman, D. (1992). An investigation of finite-sample behavior of confidence interval estimators. Operations Research, 40(5), 898-913.
    [20] Schmeiser, B.W. (1982). Batch size effects in the analysis of simulation output. Operations Research, 30(3), 556-568.
    [21] Schruben, L.W. (1983). Confidence interval estimation using standardized time series. Operations Research, 31(6), 1090-1108.
    [22] Smith, B., Boyle, J., Dongarra, J., Garbow, B., Ikebe, Y., Klema, V., & Moler, C.
    (1976). Matrix eigensystem routines. EISPACK Guide, Lecture Notes in Computer Science, Volume 6, Springer Verlag, New York.
    [23] Yeh, Y., Schmeiser, B.W. (2015b). OBM confidence intervals: Something for nothing? In Proceedings of the 2015 Winter Simulation Conference, Yilmaz, L., Chan, W.K.V., Moon, I., Roeder, T.M.K., Macal, C., & Rossetti, M.D., (eds). Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 551-561.
    [24] Yeh, Y., Schmeiser, B.W. (2018). Statistical inference via overlapping batch means: The OBM-χ 2 and OBM-t distributions. Working paper. Institute of Industrial Management, National Central University, Taoyuan, Taiwan.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE