| 研究生: |
許庭耘 Hsu, Ting-Yun |
|---|---|
| 論文名稱: |
鈀催化分子內環化:合成苯并[k]荧蒽為基本結構的多環芳香烴衍生物 Palladium-Catalyzed Cyclization : Synthesis of Benzo[k]fluoranthene-Based PAHs Derivatives |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 苯并[k]荧蒽 、分子內環化 、鈀催化 |
| 外文關鍵詞: | benzo[k]fluoranthene, intramolecular cyclization, palladium-catalyzed |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
苯并[k]荧蒽的分子結構使其具有獨特的物理性質,可運用在OLED上,然而此本篇論文想利用苯并[k]荧蒽的結構加以延伸,增加π共軛能力後,探討是否也具有OFET的性質。
將化合物21在金屬催化下使相鄰的雙炔進行分子內環化,分別經過金屬、溫度、溶劑與鹼的各種測試後得到最佳反應條件為二(三環己基磷)二氯化鈀 (5 mol%)、2,6-二叔丁基對甲酚 (8 mol%)、1,8-二氮雜二環[5.4.0]十一碳-7-烯 (3當量),溶劑為二甲基甲醯胺、於130 ℃下反應24小時,其轉換率為100%,產率為65%。
利用上述的最佳反應條件再與不同的衍生物進行環化,產率為2058%,又化合物25與26環化中發現,不加入1,8-二氮雜二環[5.4.0]十一碳-7-烯才會使其環化,而化合物27因為雙炔距離較近,在沒有鈀金屬幫助下的環化產率為45%。
利用各種對稱雙炔衍生物進行分子內環化,以延伸苯并[k]荧蒽的結構,實驗中發現化合物58與62可以成功環化得到化合物64與65或66,產率為50%與18%。
Benzo[k]fluoranthene molecular structure that is a unique physical properties can be used in the OLED. Compound 16 in the metal-catalyzed intramolecular cyclization were tested in various metals, temperature, solvent and base to obtain the optimized reaction conditions.
We were delighted to see that under the optimized reaction condictions,
dichlorobis(tricyclohexylphosphine)palladium(II),2,6-bis(1,1-dimethylethyl)-4-methylphenol, 1,8-diazabicyclo[5.4.0]undec-7-ene , in dimethylformamide, at 130 ℃for 24 hours,the conversion was 100% and the yield was 65%. Under the optimized reaction conditions, using different derivatives to cyclize was obtained in 2058% yield. We found that when not adding 1,8-diazabicyclo[5.4.0]undec-7-ene, compound 25 with compound 26 to be
successful cyclization.
Compound 27 of the short diacetylene distance, without of the palladium metal was obtained in 45% yield. In order to extend benzo[k]fluoranthene structure, we used a variety of symmetrical diacetylene derivatives to cyclize. We found that compound 58 and 62 can be successfully cyclized to give compound 64 and 65 or 66, in 50% yield and 18% yield.
1.Huitema, H. E. A.; Gelinck, G. H.; der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.; Cantatore, E.; Herwig, P. T.; Breemen, A. J. J. M.; De Leeuw, D. M. Nature, 2001, 414, 599.
2.Huitema, H. E.; Gelinck, G. H.; Veenendaal, E.; Cantatore, E.; Touwslager, F. J.; Schrijnemakers, L. R. R.; der Putten, J. B. P. H.; Geuns, T. C.; Beenhakkers, M. J.; Lieshout, P. J. G.; Lafarre, R. W.; De Leeuw, D. M.; Vam Rens, B. J. E. IDW Digest, 2005, 1663.
3.Pope, M.; Kallmann, H.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
4.Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Schmid, G.; Dehm, C. Appl. Phys. Lett. 2003, 82, 4175.
5.Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Yamaji, M. J. Am. Chem. Soc .2008, 130, 10470.
6.Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E.; Adv. Mater. 2003, 15, 2009.
7.Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew. Chem. Int. Ed. Engl. 2003, 42, 1159.
8.Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; KosbarL, L.; Graham, T. O.; Curioni, A.; Andreoni, W. Appl. Phys. Lett. 2002, 80, 2517.
9.Jones, B. A.; Ahrens, M. J.; Yoon, M.–H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angew. Chem. Int. Ed. Engl .2004, 43, 6363.
10.Ling, M.–M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z.; Adv. Mater. 2007, 19, 1123.
11.Kobayashi, S.; Takenobu, T.; Mori, S.; Fujiwara, A.; Iwasa, Y. Appl. Phys. Lett. 2003, 82, 4581.
12.Anthopoulos, T. D.; Tanase, C.; Setayesh, S.; Meijer, E. J.;Hummelen, J. C.; Blom, P. W. M.; Leeuw, D. M. Adv. Mater. 2004, 16, 2174.
13.Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue. Y.;Sato. F.; Tokito. S.; J. Am. Chem. Soc. 2004, 126, 8138.
14.Tang, M. L.; Reichardt, A. D.; Miyaki, N.; Stoltenberg, R. M.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 6064.
15.Ikai, M.; Ichinosawa, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Appl. Phys. Lett. 2001, 79, 156.
16.Branchi, B.; Balzani, V.; Ceroni, P.; Kuchenbrandt, M. C.; Klärner, F. –G.; Bläser, D.; Boese, R. J. Org. Chem. 2008, 73, 5839.
17.Yan, Q.; Zhou, Y.; Ni, B. –B.; Ma, Y.; Wang, J.; Pei, J.; Cao, Y. J. Org. Chem. 2008, 73, 5328.
18.King, A.; Okukado, N.; Negishi, E. ‒I. J. Chem. Soc. Chem. Commun. 1977, 683.
19.Tesmer, M.; Vahrenkamp, H. Eur. J. Inorg. Chem. 2001, 5, 1183.
20.Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1991, 113, 7082.
21.Diels, O.; Alder, K. Eur. J. Inorg. Chem. 1928, 1, 98.
22.Sun, Z.; Huang, K. ‒Wei.; Wu, J. Org. Lett. 2010, 12, 4690.
23.Röger, C.; Würthner, F. J. Org. Chem. 2007, 72, 8070.
24.Veller, B. V.; Robinson, D.; Swager, T. M. Angew. Chem. Int. Ed. 2012, 51, 1182.
25.Yamamoto, G.; Oki, M. Bull. Chem. Soc. Jpn., 1983, 56, 2082.
26.Toyota, S.; Yamamori, T.; Makino, T.; Oki, M. Bull. Chem. Soc. Jpn., 2000, 73, 2591.