| 研究生: |
陳乾永 Chen, Chien-Yung |
|---|---|
| 論文名稱: |
圓錐貫入試驗於土壤分類與液化潛能評估之應用
-以高雄大林電廠更新區域為例 Application of the CPT on Soil Classification and Liquefaction Potential Evaluation -Talin Power Project |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 圓錐貫入試驗 、土壤分類 、液化潛能 |
| 外文關鍵詞: | Cone Penetration Test, Soil Classification, liquefaction Potential |
| 相關次數: | 點閱:122 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
圓錐貫入試驗在工程上的應用主要有土壤分類、推求土壤工程性質與相關參數及評估土層支承力與液化等,其中以土壤分類與土層研判為最常應用的項目,本文首先探討國內的土壤在最常使用之Begemann、Eslami – Fellenius、Robertson及Olsen et al.土壤分類圖表中的分佈情形以檢核其適用性,並由平行調查鑽孔進行資料比對。同時,檢討CPT資料應用於土壤細料含量及SPT-N之估算情形,並提出簡易估算SPT-N之方法。
另二段由案例應用結果顯示,CPT簡化土壤分類模式在使用Begemann法及Eslami - Fellenius法於砂性土壤及砂泥混合型準確性相當高,但應用於粘性土壤(CL.ML.CL-ML)則準確性不佳;而以Robertson等人(1997) 之土壤行為指數(Ic) 與錐尖阻抗(qc)求得N值為略小於實際試驗之SPT-N值,試驗之SPT-N 約為估算得之CPT-N60 的1.36 倍。其次CPT 錐尖阻抗偏低,抗液化安全係數低且於液化潛能機率(PL)分級評估時,幾乎皆屬液化分類第三級之液化和非液化皆有可能之土層,液化潛能極高。
The application of Cone Penetration Test (CPT) on soil engineering mainly are soil classification, evaluation of soil properties and related soil parameters, estimation of bearing capacity of soil and the evaluation of potential of soil liquefaction. And soil classification is the one most commonly in use.
This study reviewed the soils taken in Taiwan and their distribution in the chart of Soil classification that used by Begemann, Eslami-Felleniue, Robertson and Olson; the applicability of the results are also examined as well. Then the results are verified by the related data those obtained from the corresponding boring holes in field. Meanwhile, the estimation of fine contents and SPT-N values in soil samples are examined.
The conclusions are drawn as (1) the accuracy of soil classification for sandy soil and silty sand is high by using Begemann and Eslami-Felleniue methods, but the accuracy is lower for clayey soils. (2) The SPT-N values obtained from soil type index (IC) and the resistance of cone tip is less slightly than the actual values, which is approximately 1.36 times of the estimated CPT-N60. (3) The soil with low resistance in CPT, the potential of soil liquefaction is much higher and almost belonging to the third type in the classification of soil liquefaction, i.e. with a high liquefaction potential.
1. ASTM D 5778-95., Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils.
2. Begemann, H.K,「 The Friction Jacket Cone as an Aid in Determining the Soil Profile,」Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering, Vol.1, pp.17~20, 1965.
3. Campanella, R, G., Gillespie, D., and Robertson, P. K. Pore pressures during cone penetration testing, Proceedings of the 2nd European Symposium on Penetration Testing ESOPT-2, Amsterdam, May 24~27, Vol. 2 pp. 507~512, 1982.
4. Douglas, B. J., and Olsen, R. S.,「Soil Classification Using Electric Cone Penetrometer,」Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, St. Louis, pp.209-277, 1981.
5. Eslami, A., and Fellenius, B. H. Soil Profile interpreted from CPTu Data, Year 2000 Geotechnical Engineering Conference, Asian Institute of Technology, Bankok, Tailand, November 27~30, 2000.
6. Iwasaki, T., Arakawa, T. and Tokida, K.,「Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,」Soil Dynamics and Earthquake Engineering Conference, Southampton, pp.925~939 , 1982.
7. Ishihara, 「 Stability of Natural Deposits during Earthquakes, 」 Proceedings, Eleventh International conference on Soil Mechanics and Foundations Engineering, San Francisco, Vol. 1, pp. 321~376, 1985.
8. Juang, C. H., Chen, C. J., and Tien, Y.M., 「Appraising CPT-based liquefaction resistance evaluation methods - artificial neural network approach, 」Canadian Geotechnical Journal, Vol. 36, pp. 443-454, 2000.
9. Lee, K. L., and Fitton, J. A. Factors Affecting the Cyclic Loading Strength of Soil. Vibration Effects of Earthquake on Soils the Foundation, ASTM STP450, American Society for Testing and Materials. 12 , 1969.
10. Lunne, T., Robertson, P. K., and Powell, J. J. M.,「Cone Penetration testing in Geotechnical Practice, 」Blackie Academic & Professional., 1997.
11. Mulilis, J.P., 「The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands, 」 Report No. EERC 75-18, U.C. Berkeley Earthquake Engineering Research Center, 1975.
12. Mulilis, J.P.etal., 「 Triaxial Testing TechniquesandSand uefaction , 」Dynamic Geotechnical Testing, ASTM, STP 654, American Society for Testing and Materials, pp. 265-279 , 1978.
13. Olsen, R.S., and Mitchell, J. K.,「CPT Stress Normalization and Prediction of Soil Classification,」Proceeding of the International Symposium on Cone Penetrometer Testing-CPT , Linkoping, Sweden, 1995.
14. Olsen, R. S.,「 Cyclic Liquefaction Based on the Cone Penetrometer Test, 」In Proceedings of the 1996 NCEER Workshop on Evaluation of Liquefaction Resistance of Soil. NCEER-97-0022. pp. 225-275, 1997.
15. Ross G. A., Seed H. B., and Migliaccio R. R. 「 Bridge Foundation in Alaska Earthquake, 」Journal of The Soil Mechanics and Foundation Division, ASCE, Vol.95, No. SM3, Proc. Paper 4223, 1969.
16. Robertson, P. K. Campanella, R. G., Gillespie. D., and Grieg. J. Use of piezometer cone data. Proceeding of American Society of Civil Engineer, ASCE,. In-Situ 86 Specialty Conferrance, Edited by S Clemence, Blacksburg. June 23-25, Geotechnical Special Publication GSP No. 6.pp. 1263-1280, 1986.
17. Robertson P. K. Soil classification by the cone penetration test. Canadian Geotechnical Journal, 27:pp.151~158, 1990.
18. Robertson, P. K. and Wride, C. E.,「Evaluating Cyclic Liquefaction potential Using the Cone Penetration Test , 」Canadian Geotechnical Journal, Vol.35, pp. 442~459, 1998.
19. Seed, H. B. and Idriss, I. M., 「Analysis of Soil Liquefaction Niigata Earthquake, 」Journal of The Soil Mechanic of Foundations Division, ASCE, Vol 93, NO, SM3, pp. 83~108, 1967.
20. Seed, H. B. and Idriss, I. M.,「Simplified Procedures for Evaluating Soil Liquefaction Potential , 」Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp.1249 - 1273, 1971.
21. Schmertmann, J. H., Guidelines for cone test, performance, and design. Federal Highway Administration, Report FHWA-TS-78209, Washington, 145P , 1978.
22. Tom Lunne, Peter K. Robertson, John J.M. Powell, Cone Penetration Testing in Geotechnical Practice, Blackie Academic &Professional, London, UK, pp.1~56, 1997.
23. Wong R. T., Seed H. B., and Chan C.K.「Cyclic Loading Liquefaction of Ravelly Soils, 」 Journal of The Soil Mechanics and Foundation Division, ASCE, Vol. 101, N. SM6, pp. 571~583, 1975.
24. Xia H., and Hu T.「 Effects of Saturation and Back Pressure on Sand Liquefaction, 」 Journal of Geotechnical Engineering, ASCE. Vol. 117, No.9, pp. 1362~1374, 1991
25. 大合公司,「大林電廠一、二號機臨時供煤系統地質鑽探報告」,2007。
26. 日本道路協會,「道路橋示方書.同解說」,V耐震設計篇,1996。
27. 古志生,「CPT土壤分類與液化評估之研究」,博士論文,國立成功大學土木工程研究所,2001。
28. 古志生,李德河,「液化危險度分級之研究」,土木水利工程學刊,第十七卷,第一期,第11~17頁,2005。
29. .李德河等,「地盤液化與沉陷」,1999集集大地震災害調查研討會論文集,第D81~D101,1999。
30. 張惠文、廖新興、鄭清江,「砂質地盤液化之防治方法探討」,地工技術,第38期,第17-29頁,1992。
31. .張吉佐、曾文德、許建裕,「台灣濱海工業區的地盤改良工法」,地工技術,第93期,第53-68頁,2002。
32. 鄭文隆、吳偉康,「土壤液化之災害型態與現地研判」,地工技術,第90 期,1985。
33. 盧政男,「新生地液化與沉陷之研究」碩士論文,義守大學土木與生態工程學系,2006。
34. 盧瑞琴,「圓錐貫入試驗土壤分類法的研究─以河川流域區分」,碩士論文,國立臺灣科技大學營建工程系,2005。
35. 蘇宏修,「CPT於土壤分類與液化潛能評估之應用」,碩士論文,國立成功大學土木工程研究所,1999。