| 研究生: |
周逢原 Chou, Feng-Yuan |
|---|---|
| 論文名稱: |
功能性氧化還原活性材料於二次電池之應用 Functional Redox-Active Materials for Rechargeable Batteries |
| 指導教授: |
柯碧蓮
Watchareeya Kaveevivitchai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 大規模儲能系統 、鈉離子電池 、多孔性高分子 、正極 、鋰離子電池 、矽酸鹽材料 、負極 |
| 外文關鍵詞: | Large-scale energy storage systems, Sodium-ion batteries, Porous organic polymer, Cathode, Lithium-ion batteries, Silicate, Anode |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池在電動車、風力、太陽能等大規模儲能應用受到許多限制,例如:鋰 金屬於地殼的含量有限且分佈不均,以及會產生樹枝狀結晶,因此,以更充足且價廉 的材料所組成的後鋰離子電池開始出現在各式實際應用上。本研究以萘二醯亞胺二胺 多孔性高分子做為鈉離子電池的正極材料。具有可修飾的多電子氧化還原活性點之多 孔性高分子,以及其開放孔洞性,提供材料高表面積,和快速的離子傳遞。經由層狀 剝離法,可使萘二醯亞胺二胺多孔性高分子層狀分離,讓鈉離子更容易接觸氧化還原 活性點,增進其電化學性質。本研究為首次以層狀剝離後之多孔性高分子做為鈉離子 正極材料,其反應機制及充放電過程中之化學變化則透過非原位(ex-situ)之傅立葉轉 換紅外光譜、拉曼光譜、X 光電子光譜進行分析。以層狀剝離後的高分子作為鈉離子 電池正極材料之電池,在電流密度 20 mA g-1 下之電容量可高達 91.8 mAh g-1,以及 電流密度 500 mA g-1 下,仍可維持電容量達 58 mAh g-1,此數值明顯優於未經層狀剝 離之電極材料。
在小規模的應用上,可充式鋰電池仍為最佳選擇,因為鋰離子質輕且體積小,可 具備高能量與功率密度。然而,鋰離子電池中常用的陽極材料石墨其電容量有限,因 此仍須開發具更高電容及安全性的材料。本實驗將一系列易合成的層狀矽酸銅/二氧 化矽以感應耦合電漿質譜儀、粉末 X 光繞射、穿透電子顯微鏡、X 光電子光譜、傅立 葉轉換紅外光譜等技術來深入探討其作為鋰離子電池負極之性質。此電極可在電流密 度 500 mA g-1 下獲得電容量 2110 mAh g-1,在高電流密度 7500 mA g-1 下仍可維持電 容量在 1090 mAh g-1。層狀矽酸銅/二氧化矽的高電容量優於大多數已知負極材料, 且其價廉,極有潛力取代當前可充電電池中的石墨負極材料。
The extensive implementation of lithium ion batteries (LIBs) in large-scale applications, such as electric vehicles and side-support energy storage units in wind/solar farms, has been restricted by several issues, such as limited amount of lithium in Earth’s crust, uneven distribution of lithium metal, and dendrite formation. Post-Li-ion batteries which are based on more abundant and low-cost materials have emerged for various practical applications. Herein, organic sodium-ion batteries (SIBs) have been developed by using naphthalene- diimide (NDI)-based porous organic polymer (POP) as cathode material. The open porous features of POP frameworks with tailorable multi-electron redox moieties allow high surface areas and rapid ion transfer. Exfoliation is used as a strategy to enhance electrochemical performance by delaminating the NDI-based POP, thus making the redox-active sites more accessible to Na+ ions. This is the first example of exfoliated POP as cathode material for sodium-ion batteries. The chemical changes and reaction mechanism during discharge/charge have been elucidated by ex-situ FT-IR, Raman, and XPS. The exfoliated polymer can deliver a capacity as high as 91.8 mAh g-1 at 20 mA g-1 and 58 mAh g-1 at 500 mA g-1, which are superior to the non-exfoliated electrode material.
In the context of small-scale applications, Li-based rechargeable batteries are still currently one of the best options due to the small size and weight of Li ions, which leads to relatively high energy and power densities. However, due to the limited specific capacity of graphite, which is currently the most used anode in LIBs, novel materials with higher capacity and stability still need to be explored. Herein, a series of easily-synthesized copper- phyllosilicate (CuPS)/SiO2 have been investigated by ICP-MS, PXRD, TEM, XPS, and FT- IR to gain insights into their properties as anode in LIBs. CuPS/SiO2 can deliver capacity of 2110 mAh g-1 at 500 mA g-1. Furthermore, even at high current density of 7500 mA g-1, the capacity of 1090 mAh g-1 still can be obtained. The high specific capacity of CuPS/SiO2 is superior to most of the reported anode materials. This inexpensive material is believed to have great potential to replace graphite anode in currently available rechargeable batteries.
(1) Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sust. Energ. Rev. 2014, 39, 748–764.
(2) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D. W.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577– 3613.
(3) Palacin, M. R. Recent Advances in Rechargeable Battery Materials: A Chemist's Perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.
(4) Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-Ion Batteries. A Look into the Future. Energy Environ. Sci. 2011, 4, 3287–3295.
(5) Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R. Beyond Intercalation-Based Li- Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting through Conversion Reactions. Adv. Mater. 2010, 22, 170–192.
111
(6) Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kim, J. Electrochemical Properties of NaxCoO2 (X ~ 0.71) Cathode for Rechargeable Sodium-Ion Batteries. Ceram. Int. 2014, 40, 2411–2417.
(7) Shibata, T.; Kobayashi, W.; Moritomo, Y. Sodium Ion Diffusion in Layered NaxMnO2 (0.49 ≤ X ≤0.75): Comparison with NaxCoO2. Appl. Phys. Express 2014, 7, 067001.
(8) Shimono, T.; Tanabe, D.; Kobayashi, W.; Muritomo, Y. Structural Response of P2-Type NaxMnO2 against Na+ Intercalation. J. Phys. Soc. Jpn. 2013, 82, 4.
(9) Sauvage, F.; Laffont, L.; Tarascon, J. M.; Baudrin, E. Study of the Insertion/Deinsertion Mechanism of Sodium into Na0.44MnO2. Inorg. Chem. 2007, 46, 3289–3294.
(10) Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Single Crystalline Na0.7MnO2 Nanoplates as Cathode Materials for Sodium-Ion Batteries with Enhanced Performance. Chem. Eur. J. 2013, 19, 10884–10889.
(11) Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Study on the Reversible Electrode Reaction of Na1-XNi0.5Mn0.5O2 for a Rechargeable Sodium- Ion Battery. Inorg. Chem. 2012, 51, 6211–6220.
(12) Casas-Cabanas, M.; Roddatis, V. V.; Saurel, D.; Kubiak, P.; Carretero-Gonzalez, J.; Palomares, V.; Serras, P.; Rojo, T. Crystal Chemistry of Na Insertion/Deinsertion in FePO4-NaFePO4. J. Mater. Chem. 2012, 22, 17421–17423.
(13) Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard, W. A.; Kang, K. Unexpected Discovery of Low-Cost Maricite NaFePO4 as a High- Performance Electrode for Na-Ion Batteries. Energy Environ. Sci. 2015, 8, 540–545.
(14) Ding, J. J.; Zhou, Y. N.; Sun, Q.; Yu, X. Q.; Yang, X. Q.; Fu, Z. W. Electrochemical Properties of P2-Phase Na0.74CoO2 Compounds as Cathode Material for Rechargeable Sodium-Ion Batteries. Electrochim. Acta 2013, 87, 388–393.
(15) Sathiya, M.; Hemalatha, K.; Ramesha, K.; Tarascon, J. M.; Prakash, A. S. Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 2012, 24, 1846–1853.
(16) Wang, Q. Y.; Zhao, B. D.; Zhang, S.; Gao, X. H.; Deng, C. Superior Sodium Intercalation of Honeycomb-Structured Hierarchical Porous Na3V2(PO4)3/C Microballs Prepared by a Facile One-Pot Synthesis. J. Mater. Chem. A 2015, 3, 7732–7740.
(17) Kim, H.; Shakoor, R. A.; Park, C.; Lim, S. Y.; Kim, J. S.; Jo, Y. N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J. W. Na2FeP2O7 as a Promising Iron-Based
Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study. Adv. Funct. Mater. 2013, 23, 1147.
(18) Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically Inspired Pteridine Redox Centres for Rechargeable Batteries. Nat. Commun. 2014, 5, 5335– 5343.
(19) Haupler, B.; Hagemann, T.; Friebe, C.; Wild, A.; Schubert, U. S. Dithiophenedione- Containing Polymers for Battery Application. ACS Appl. Mater. Interfaces 2015, 7, 3473–3479.
(20) Bhosale, M. E.; Chae, S.; Kim, J. M.; Choi, J. Y. Organic Small Molecules and Polymers as an Electrode Material for Rechargeable Lithium Ion Batteries. J. Mater. Chem. A 2018, 6, 19885–19911.
(21) Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 9443–9446.
(22) DeBlase, C. R.; Hernandez-Burgos, K.; Rotter, J. M.; Fortman, D. J.; Abreu, D. D.; Timm, R. A.; Diogenes, I. C. N.; Kubota, L. T.; Abruna, H. D.; Dichtel, W. R. Cation- Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous
Polymer Thin Films and Their Application to Electrical Energy Storage. Angew. Chem. Int. Ed. 2015, 54, 13225–13229.
(23) Haupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5, 1402034.
(24) Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode Properties of Na2C6O6 for Sodium-Ion Batteries. Electrochim. Acta 2013, 110, 240–246.
(25) Luo, C.; Zhu, Y. J.; Xu, Y. H.; Liu, Y. H.; Gao, T.; Wang, J.; Wang, C. S. Graphene Oxide Wrapped Croconic Acid Disodium Salt for Sodium Ion Battery Electrodes. J. Power Sources 2014, 250, 372–378.
(26) Renault, S.; Mihali, V. A.; Edstrom, K.; Brandell, D. Stability of Organic Na-Ion Battery Electrode Materials: The Case of Disodium Pyromellitic Diimidate. Electrochem. Commun. 2014, 45, 52–55.
(27) Deng, W. W.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Yang, H. X. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 21095–21099.
(28) Luo, W.; Allen, M.; Raju, V.; Ji, X. L. An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1400554.
(29) Wang, H. G.; Yuan, S.; Ma, D. L.; Huang, X. L.; Meng, F. L.; Zhang, X. B. Tailored Aromatic Carbonyl Derivative Polyimides for High-Power and Long-Cycle Sodium- Organic Batteries. Adv. Energy Mater. 2014, 4, 1301651.
(30) Xu, F.; Xia, J. T.; Shi, W. Anthraquinone-Based Polyimide Cathodes for Sodium Secondary Batteries. Electrochem. Commun. 2015, 60, 117–120.
(31) Xu, F.; Wang, H. T.; Lin, J. H.; Luo, X.; Cao, S. A.; Yang, H. X. Poly(Anthraquinonyl Imide) as a High Capacity Organic Cathode Material for Na-Ion Batteries. J. Mater. Chem. A 2016, 4, 11491–11497.
(32) Song, Z. P.; Qian, Y. M.; Zhang, T.; Otani, M.; Zhou, H. S. Poly(Benzoquinonyl Sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Adv. Sci. 2015, 2, 1500124–1500132.
(33) Deng, W. W.; Liang, X. M.; Wu, X. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A Low Cost, All-Organic Na-Ion Battery Based on Polymeric Cathode and Anode. Sci Rep. 2013, 3, 2671–2676.
(34) Qi, W.; Shapter, J. G.; Wu, Q.; Yin, T.; Gao, G.; Cui, D. X. Nanostructured Anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives. J. Mater. Chem. A 2017, 5, 19521–19540.
(35) Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes. J. Mater. Chem. A 2017, 5, 11671–11681.
(36) Oktaviano, H. S.; Yamada, K.; Waki, K. Nano-Drilled Multiwalled Carbon Nanotubes: Characterizations and Application for LIB Anode Materials. J. Mater. Chem. 2012, 22, 25167–25173.
(37) Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries. Carbon 2009, 47, 2049–2053.
(38) Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114, 11444–11502.
(39) Menkin, S.; Barkay, Z.; Golodnitsky, D.; Peled, E. Nanotin Alloys Supported by Multiwall Carbon Nanotubes as High-Capacity and Safer Anode Materials for EV Lithium Batteries. J. Power Sources 2014, 245, 345–351.
(40) Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653.
117
(41) Cao, K. Z.; Jin, T.; Yang, L.; Jiao, L. F. Recent Progress in Conversion Reaction Metal Oxide Anodes for Li-Ion Batteries. Mater. Chem. Front. 2017, 1, 2213–2242.
(42) Li, F.; Wei, Z. X.; Manthiram, A.; Feng, Y. Z.; Ma, J. M.; Mai, L. Q. Sodium-Based Batteries: From Critical Materials to Battery Systems. J. Mater. Chem. A 2019, 7, 9406– 9431.
(43) Lee, K. T.; Jeong, S.; Cho, J. Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries. Acc. Chem. Res. 2013, 46, 1161–1170.
(44) Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120.
(45) Yabuuchi, N.; Yano, M.; Kuze, S.; Komaba, S. Electrochemical Behavior and Structural Change of Spinel-Type Li[LixMn2-X]O4 (X=0 and 0.2) in Sodium Cells. Electrochim. Acta 2012, 82, 296–301.
(46) Gao, Y. R.; Wang, Z. X.; Lu, G. Atomistic Understanding of Structural Evolution, Ion Transport and Oxygen Stability in Layered NaFeO2. J. Mater. Chem. A 2019, 7, 2619– 2625.
(47) Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical Investigation of the P2-NaxCoO2 Phase Diagram. Nat. Mater. 2011, 10, 74–80.
(48) Lee, K. T.; Ramesh, T. N.; Nan, F.; Botton, G.; Nazar, L. F. Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries. Chem. Mater. 2011, 23, 3593–3600.
(49) Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y.; Mueller, K. T.; Mai, L. Q.; Liu, J.; Yang, J. H. Water-Lubricated Intercalation in V2O5.nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2018, 30, 1703725.
(50) Gopalakrishnan, J.; Rangan, K. K. V2(PO4)3 - a Novel Nasicon-Type Vanadium Phosphate Synthesized by Oxidative Deintercalation of Sodium from Na3V2(PO4)3. Chem. Maert. 1992, 4, 745–747.
(51) Jiang, X. L.; Liu, H. J.; Song, J.; Yin, C. F.; Xu, H. Y. Hierarchical Mesoporous Octahedral K2Mn1-xCoxFe(CN)6 as a Superior Cathode Material for Sodium-Ion Batteries. J. Mater. Chem. A 2016, 4, 16205–16212.
(52) Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. Chem. Commun. 2012, 48, 6544–6546.
(53) Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The Rise of Organic Electrode Materials for Energy Storage. Chem. Soc. Rev. 2016, 45, 6345–6404.
(54) Besenhard, J. O.; Winter, M. Advances in Battery Technology: Rechargeable Magnesium Batteries and Novel Negative-Electrode Materials for Lithium Ion Batteries. ChemPhysChem 2002, 3, 155–159.
(55) Zhu, L. M.; Niu, Y. J.; Cao, Y. L.; Lei, A. W.; Ai, X. P.; Yang, H. X. N-Type Redox Behaviors of Polybithiophene and Its Implications for Anodic Li and Na Storage Materials. Electrochim. Acta 2012, 78, 27–31.
(56) Wu, X. Y.; Ma, J.; Ma, Q. D.; Xu, S. Y.; Hu, Y. S.; Sun, Y.; Li, H.; Chen, L. Q.; Huang, X. J. A Spray Drying Approach for the Synthesis of a Na2C6H2O4/CNT Nanocomposite Anode for Sodium-Ion Batteries. J. Mater. Chem. A 2015, 3, 13193–13197.
(57) Kim, J. K.; Kim, Y.; Park, S.; Ko, H.; Kim, Y. Encapsulation of Organic Active Materials in Carbon Nanotubes for Application to High-Electrochemical-Performance Sodium Batteries. Energy Environ. Sci. 2016, 9, 1264–1269.
(58) Deng, W. W.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. Small 2016, 12, 583–587.
(59) Han, S. C.; Bae, E. G.; Lim, H.; Pyo, M. Non-Crystalline Oligopyrene as a Cathode Material with a High-Voltage Plateau for Sodium Ion Batteries. J. Power Sources 2014, 254, 73–79.
(60) Wang, H.; Hu, P. F.; Yang, J.; Gong, G. M.; Guo, L.; Chen, X. D. Renewable-Juglone- Based High-Performance Sodium-Ion Batteries. Adv. Mater. 2015, 27, 2348–2354.
(61) Guo, C. Y.; Zhang, K.; Zhao, Q.; Peia, L. K.; Chen, J. High-Performance Sodium Batteries with the 9,10-Anthraquinone/CMK-3 Cathode and an Ether-Based Electrolyte. Chem. Commun. 2015, 51, 10244–10247.
(62) Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X.; Wang, B. Exfoliation of Covalent Organic Frameworks into Few- Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.
(63) Gu, S.; Wu, S. F.; Cao, L. J.; Li, M. C.; Qin, N.; Zhu, J.; Wang, Z. Q.; Li, Y. Z.; Li, Z. Q.; Chen, J. J.; Lu, Z. G. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141, 9623–9628.
(64) Li, H. Y.; Tang, M.; Wu, Y. C.; Chen, Y.; Zhu, S. L.; Wang, B.; Jiang, C.; Wang, E. J.; Wang, C. L. Large
校內:2024-08-31公開