| 研究生: |
何宜衡 Ho, Yi-Heng |
|---|---|
| 論文名稱: |
拉曼光譜技術搭配介電泳晶片應用於幽門桿菌致病菌株光譜分析之研究 Integration of Raman Scattering Technique and Dielectrophoresis Chip for Spectrum Analysis of Helicobacter pylori Species |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 介電泳力 、拉曼光譜儀 、幽門桿菌 |
| 外文關鍵詞: | H. pylori, Dielectrophoresis, Raman Spectroscopy |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
世界上感染幽門桿菌(Helicobacter pylori, H. pylori)的盛行率超過了50%,更有研究指出H. pylori的感染與十二指腸潰瘍(duodenal ulcer, DU)與胃癌(gastric cancer, GC)的發生有高度的相關性,驅使世界衛生組織把H. pylori歸類為第一類致癌物質。其後,會造成DU與GC不同的病理變化也繼之被認為是受H. pylori本身帶有不同致病因子所導致,於是如何快速且精確的檢測出H. pylori的種類,乃是能提供正確治療資訊,促進臨床治癒率的不二法門。傳統檢測中的尿素酶試驗法已可在4 hr內判斷H. pylori感染之有無,但未能進一步鑑定菌種是其缺憾。另一方面,目前以PCR法固然可用來鑑定H. pylori菌種,然需細菌培養、DNA抽出等繁瑣耗時步驟始能為功。基於此,本研究嘗試以介電泳檢測技術捕捉H. pylori,再導入拉曼光譜法,以全細胞、非破壞方式來分析鑑定。
本研究共分為細菌的微晶片捕捉與Raman光譜鑑定分析兩部份:(1)藉由微機電製程技術設計、製作出擁有上下電極接合和圓洞電極陣列分佈,以及提供高捕捉率的微型立體式介電泳(DEP)晶片。在20 mM PBS溶液中,設定20 Vp-p頻率300 kHz的交流電訊號,可令H. pylori被所呈現的負介電泳力捕捉。(2)以Raman光譜儀分析H. pylori所呈現的光譜訊號,結果發現H. pylori經babA2基因剔除者與其野生型者(wild type),在1002-1003 cm-1、1200-1400 cm-1與1500-1700 cm-1三個區段,呈現很明顯的差異。基於實際的樣本可能會混雜其它致病菌,將影響Raman圖譜之辨識,為此我們也建立了S. aureus、E. faecium、H. pylori和E. coli的拉曼光譜資料庫,並以主成分分析法(PCA)及聚類分析法(HCA)幫助複雜圖譜的區分歸類。此舉有利於我們進行11個GC與9個DU病患檢體培養出的H. pylori的拉曼光譜之辨識,特別是發現在1365-1373 cm-1的這一頻段中,H. pylori光譜出現明顯訊號的GC病患樣本佔了82.2%,而DU病患的則僅佔22.2%,應可作為其間差異的判斷指標。另外,我們也嘗試了被認為是BabA蛋白成份光譜區段中的1200-1250 cm-1,以HCA方式將20個H. pylori光譜群分化,得到在GC群中有8個GC但夾含2個DU,然在DU群中有7個DU但也出現了3個GC之初步結果。基於以上技術建立,我們也嘗試於DEP晶片上將H. pylori #238捕捉後,直接擷取其Raman光譜,然玻璃基材的高螢光背景值,導致H. pylori的訊號極為薄弱,尚難達能辨識的程度。
本項技術研發,若再能配合晶片系統的改良,並再有多數的臨床檢體樣本來充實資料庫,相信未來可提供檢體是否帶有H. pylori快速辨識之外,更可同時鑑定其是否為會導致GC抑或DU。
Helicobacter pylori, H. pylori's global prevailance rate is over fifty percent .patients with duodenal ulcer, DU or gastric cancers, GC are highly related to H. pylori infection. The WHO classifies H. pylori as the first part of carcinogen. Recent findings discover that different sickening factors result in different pathological presentation. The exact and quick classification of H. pylori can provide the doctors with accurate information to apply appropriate treatment.Conventional methods could provide H. pylori infection result in 4 hr. However, it can not further identify the species.Nonetheless, the procedures are relatively time-consuming. It is often weeks before accurate results can be obtained. In this research, a dielectrophoretic (DEP) technique has been applied to trapping H. pylori. And then we go to Raman spectroscopy, Raman spectrum’s scattering mechanism can be used to analyze molecular structure of bacteria and be applied to identification of H. pylori species.
This study has two parts; (1) we use MEMS Fabrication to make the 3D chip which was constructed by two electrode chips with one at the top, the other at the bottom and a fluidic channel sandwiched between to avoid electric field attenuation. The electrode design of circular holes array can increase trapping efficiency. In the 20 mM PBS solution at 20 Vp-p and 300 kHz, H. pylori were trapped successfully by nDEP force. (2) We use Raman spectroscopy to set up H. pylori Raman spectra. BabA protein expression can be identified by 1002-1003 cm-1、1200-1400 cm-1 and 1500-1700 cm-1 Raman shift of H. pylori Raman spectra. For practical conditions, real samples usually contain not only one kind of bacteria species. So that, we set up S. aureus, E. faecium, H. pylori and E. coli Raman spectra and use PCA and HCA methods to execute classification of bacteria. And then, we also establish 11GC and 9DU H. pylori Raman spectra successfully. According to qualitative analysis results, in 1365-1373 cm-1, H. pylori Raman spectra of GC patient and DU patient accounts for 82.2% and 22.2% respectively. On the side, we choose 1200-1250 cm-1 Raman shift (BabA protein part Raman shift ) of 20 H. pylori Raman spectra to execute HCA. The 20 H. pylori Raman spectra can be categorized in two groups. One group has eight GC and two DU. Another group has seven DU and three GC. At last, we combine Raman scattering technique with DEP chip for identification of H. pylori#238. However, the Raman singnal of H. pylori#238 is so weak by glass fluorescence.
This research can distinguish H. pylori with BabA protein difference from others and can tell the differnce between H. pylori and other pathogen on the spectrum. And find the Raman shift GC and DU differ in .We can increase the difference between GC and DU from the Raman shift. This method if go together with improvement of chip system can not only apply to patients’ H. pylori infection inspection, but also identify H. pylori to see if it lead to GC or DU. So this system takes short inspection time and can give us accurate results.
[1]陳建人,微機電系統技術與應用,國科會精儀中心出版,新竹市,民 國92年初版。
[2]王翠蓮,表面增強拉曼光譜技術應用於單分子偵測及生物分子定量分析,碩士論文,國立陽明大學,(2004)。
[3]陳天文,腫瘤壞死因子啟動子基因多型性和幽門桿菌相關胃部病理變化之關連分析,碩士論文,國立成功大學,(2004)。
[4]劉家賓,幽門桿菌附著分子hopZ 和sabA 基因之分析,碩士論文,國立成功大學,(2004)。
[5]林肇堂,胃腸疾病與幽門螺旋桿菌,健康世界叢書,臺北縣,民國89年十月
[6]鄭宇明,高壓氧氣在幽門螺旋桿菌之根除治療中所扮演的角色-動物模式,碩士論文,國防醫學院,(2003)。
[7]顧同進,專家解答:幽門螺旋桿菌,史丹佛家庭醫學百科全書編輯委員會編輯,臺北市,民國95年初版。
[8]黃國華,《科學發展》,行政院國科會科資中心,臺北市,381期,64~69頁,2004年9月。
[9]王少君,《科學發展》,行政院國科會科資中心,臺北市,369期,74~77頁,2003年9月。
[10] Ferraro J. R. and K. Nakamoto, Introductory Raman Spectroscopy, Academic Press, San Diego, 71-92, 1994.
[11] B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, Y. Fintschenko, Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators, Analytical Chemistry, 76, 1571-1579, 2004.
[12] Torsten mÜller,Annette pfennig,Petra klein,Gabriele gradl,Magnus jÄger, and Thomas schnelle, The Potential of Dielectrophoresis for Single-Cell Experiments, IEEE Engineering in Medicine and Biology Magazine, 22, 51-61, 2003.
[13] Frank Grom, Jörg Kentsch, Torsten Müller, Thomas Schnelle and Martin Stelzle, Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis, Electrophoresis, 27, 1386-1393, 2006.
[14] Joel Voldman, Mehmet Toner, Martha L. Gray, and Martin A. Schmidt, A Dielectrophoresis-Based Array Cytometer, Journal of Electrostatics, 57, 69-90, 2003.
[15] Becker, F.F., Wang, X.B., Huang, Y., Pethig, R., Vykoukal, J. & Gascoyne, and P.R.C., The removal of human leukaemia cells from blood using interdigitated microelectrodes, Journal of Physics D: Applied Physics, 27, 2659-2662, 1944.
[16] Cheng, J., Sheldon, E.L., Wu, L., Heller, M.J. & O’Connell, and J.P., Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip, Analytical Chemistry, 70, 2321-2326, 1998.
[17] Li H.and Bashir R, Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes, Sensors and Actuators B: Chemical, 86, 215-221, 2002.
[18] Ying Huang, Sunghae Joo, Melanie Duhon, Michael Heller, Bruce Wallace, and Xiao Xu, Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays, Analytical Chemistry, 74, 3362-3371, 2002.
[19] B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators, Analytical Chemistry, 76, 1571-1579, 2004.
[20] W. Mike Arnold and Nick R. Franich, Cell isolation and growth in electric-field defined micro-wells, Current Applied Physics, 6, 371–374, 2006.
[21] Kyung Eun Sung and Mark A. Burns, Optimization of Dielectrophoretic DNA stretching in microfabricated devices, Analytical Chemistry, 78, 2939 -2947, 2006.
[22]彭芳英,拉曼光譜細胞監測研究,碩士論文,國立陽明大學,(2005)。
[23] K.C. Schuster, E. Urlaub, J.R. Gapes, Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture, Journal of Microbiological Methods, 42, 29-38, 2000.
[24] M. Harz, P. Rosch, K.-D. Peschke, O. Ronneberger, H. Burkhardt and J. Popp, Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions, The Analyst, 130, 1543-1550, 2005.
[25] Joke De Gelder, Kris De Gussema, Peter Vandenabeele, Paul De Vos, Luc Moensa, Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans, Analytica Chimica Acta, 585, 234–240, 2007.
[26] Taehan Park, Sangyeop Lee, Gi Hun Seong, Jaebum Choo, Eun Kyu Lee, Yang S. Kim, Won Ho Ji, Seung Yong Hwang, Dae-Gab Gweond and Sanghoon Lee, Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study, Lab on a Chip, 5, 437-442, 2005.
[27] C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L.-P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglla, P. Allouch, M. Mainfatt, G. J. Puppels, and D. Naumann, Classification and identification of Enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study, Journal of Clinical Microbiology, 39, 1763–1770, 2001.
[28] K. Maquelin, L.-P. Choo-Smith, H. P. Endtz, H. A. Bruining, and G. J. Puppels, Rapid identification of Candida species by confocal Raman microspectroscopy, Journal of Clinical Microbiology, 40, 594–600, 2002.
[29] E. Consuelo Lo´ pez-Dı´ez and Royston Goodacre, Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics, Analytical Chemistry, 76, 585-591, 2004.
[30] Lars M. Ericson and Pehr E. Pehrsson, Aggregation effects on the Raman spectroscopy of Dielectrophoretically deposited single-walled carbon nanotubes, Journal of Physical Chemistry B, 43, 20276-20280, 2005.
[31] Cheng, I., Chang, H.-C., Hou, D., and Chang, H.-C., An integrated high-throughput Dielectrophoretic chip for continuous bio-particle filtering, focusing, sorting, trapping and detecting, Biomicrofluidics, 1, 021503, 2007
[32] 黃錦煌,輕鬆易學有限元素分析大師FAMLAB,臺北市,民國93年初版。
[33] 林清山,多變項分析統計法,東華社會科學叢書,臺北市,民國92年元月五版。
[34] 羅積玉,多元統計分析方法與應用,科技圖書股份有限公司,臺北市,民國79年5月初版。
[35] M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, T. Shinohara, Molecular dielectrophoresis of biopolymers, IEEE Trans. Ind. Appl., 30, 835-843, 1994.
[36] I. C. V. Bento, P. T. C. Freire, R. R. F. Bento, V. Lemos, F. E. A. Melo, J. Mendes Filho, P. S. Pizani, and A. J. D.Moreno, High-temperature Raman spectroscopy of monohydrated L-asparagine : Cr3+, Journal of Raman Spectroscopy, 37, 1393–1397, 2006.
[37] B. L. Silva, P. T. C. Freire, F. E. A. Melo, J. Mendes Filho, M. A. Pimenta, and M. S. S. Dantas, High-pressure Raman spectra of L-threonine crystal, Journal of Raman Spectroscopy, 31, 519–522, 2000.
[38] S. Jarmelo, P.R. Carey, R. Fausto, The Raman spectra of serine and 3,3-dideutero-serine in aqueous solution, Vibrational Spectroscopy, 43, 104–110, 2007.
[39] Yulei Shi and LiWang, Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy, Journal of Physics D: Applied Physics, 38, 3741–3745, 2005.
[40] M. Tipping, K. Viras, and T. A. King, Low-frequency dynamics of solid poly (L-alanine) from Raman spectroscopy, Biopolymers, 23, 2891-2899, 1984.
[41] K. Christian Schuster, Ingo Reese, Eva Urlaub, J. Richard Gapes, and Bernhard Lendl, Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy, Analytical Chemistry, 72, 5529-5534, 2000.
[42] K.C. Schuster, E. Urlaub, J.R. Gapes, Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture, Journal of Microbiological Methods, 42, 29-38, 2000.
[43] K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H.Ph. Endtz, D. Naumann, G.J. Puppels, Identification of medically relevant microorganisms by vibrational spectroscopy, Journal of Microbiological Methods, 51 255-271, 2002.
[44] Wei E. Huang, Robert I. Griffiths, Ian P. Thompson, Mark J. Bailey, and Andrew S. Whiteley, Raman microscopic analysis of single microbial cells, Analytical Chemistry, 76, 4452-4458, 2004.
[45] Kees Maquelin, Lin-P’ing Choo-Smith, Tamara van Vreeswijk, Hubert Ph. Endtz, Brian Smith, Robert Bennett, Hajo A. Bruining, and Gerwin J. Puppels, Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium, Analytical Chemistry, 72, 12-19, 2000.
[46] Mary L. Laucks, Atanu Sengupta, Karen Junge, E. James Davis, and Brian D. Swanson, Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy, Society for Applied Spectroscopy, 59, 1222-1228, 2005.
[47] Ute Neugebauer, Petra Rçsch, Michael Schmitt, Jrgen Popp, Carine Julien, Akiko Rasmussen, Christian Budich, and Volker Deckert, On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy, ChemPhysChem, 7, 1428-1430, 2006.
[48] M. Harz, P. Rosch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions, The Analyst, 130, 1543-1550, 2005.