| 研究生: |
張靖偉 Chang, Jing-Wei |
|---|---|
| 論文名稱: |
應用晶格波茲曼法與有限體積法-模擬高黏度流體之溫度與流場 Applying Lattice Boltzmann Method and Finite Volume Method to simulate temperature and flow fields of high viscosity fluids |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 晶格波茲曼法 、有限體積法 、單向自由表面 、高黏度流體 |
| 外文關鍵詞: | Lattice Boltzmann Method, Finite Volume Method, Free surface flow, High viscosity fluid |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用晶格波茲曼法(Lattice Boltzmann Method, LBM)計算移動邊界流體流場,並將LBM計算的結果,配合使用有限體積法(Finite Volume Method, FVM)離散的能量方程式計算溫度場。LBM為介觀尺度的模擬方式,有著程式撰寫簡單、計算效率高及容易模擬兩相流的優點。FVM所離散的能量方程式中,各參數有明確的物理意義且方程式遵守能量守恆,是目前處理熱傳問題最廣泛使用的方法。
本文主要分為兩個部分,一是將使用自由表面方式的晶格波茲曼法與有限體積法配合,模擬出液體在流道內充填的情形,以及液體前端溫度受氣體溫度影響而下降的現象。過程中要處理的問題重點為流動邊界的移動,包含液體格點的速度修正,液體-介面格點、介面-氣體格點間的溫度傳遞條件、兩種模擬方式間時間步長的配合。二為探討高黏度流體及其參數設定對自由表面程式的誤差的影響,並找出此程式適用的參數範圍。
In this study, the Lattice Boltzmann Method is used to calculate the free surface flow, and the resulting flow field are used to solve the energy equation by the Finite Volume Method for the temperature field. LBM is a mesoscopic simulation method, which has many advantages as simple programming, high calculation efficiency and applicability to two-phase flow. The LBM method uses the lattice parameters for the simulation while the finite volume method uses physical parameters for the energy equation. The FVM has been widely used in solving the energy equation for heat transfer problems.
This study can be divided into two parts. In the first part, we use the Finite Volume Method and Lattice Boltzmann Method with Free Surface boundary to simulate the velocity and temperature distributions of the filling flow in a channel. The movement of the flow front in a channel was simulated while the heat transfer of the fluid was also calculated. In the simulation, there are problems should be solved, including the heat transfer at liquid/interface and interface/gas, speed correction of liquid grid, and regulation of time step between LBM and FVM. In the second part, we discuss the effects of parameters of high viscosity fluids on calculation errors, and find out the range of LBM parameters applicable to this problem.
[1] Hardy J, de Pazzis O, and Pomeau Y, “Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions”, Phys. Rev. A, vol. 13, pp. 1949–1961, 1976.
[2] Frisch U, Hasslacher B, and Pomeau Y, “Lattice-Gas Automata for the Navier-Stokes Equation”, Phys. Rev. Lett., vol. 56, pp. 1505–1508, 1986.
[3] Succi S, The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford university press, 2001.
[4] McNamara GR and Zanetti G, “Use of the Boltzmann Equation to Simulate Lattice-Gas Automata”, Phys. Rev. Lett., vol. 61, pp. 2332–2335, 1988.
[5] Higuera FJ and Jiménez J, “Boltzmann Approach to Lattice Gas Simulations”, Europhys. Lett., vol. 9, pp. 663–668, 1989.
[6] Chen H, Chen S, and Matthaeus WH, “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, vol. 45, R5339–R5342, 1992.
[7] Qian YH, D’Humières D, and Lallemand P, “Lattice BGK Models for Navier-Stokes Equation”, Europhys. Lett., vol 17, pp. 479–484, 1992.
[8] Qian YH and Orszag S, “A. Lattice BGK Models for the Navier-Stokes Equation: Nonlinear Deviation in Compressible Regimes”, Europhys. Lett., vol. 21, pp. 255–259, 1993.
[9] Bhatnagar PL, Gross EP ,and Krook M, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems”, Phys. Rev., vol. 94, pp. 511–525, 1954.
[10] Ziegler DP, “Boundary conditions for lattice Boltzmann simulations”, J Stat Phys, vol. 71, pp. 1171–1177, 1993.
[11] Zou Q and He X, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Physics of Fluids, vol. 9, pp. 1591–1598, 1997.
[12] Chang SC, Hsu YS, and Chen CL, “Lattice Boltzmann simulation of fluid flows with fractal geometry an unknown-index algorithm”, J. Chin. Soc. Mech. Eng, vol. 32, pp. 523-531, 2011.
[13] Chang SC, “Lectures for the Lattice Boltzmann Method”, Department of Mechanical Engineering, NCKU, Taiwan2016.
[14] Gunstensen AK, Rothman DH, Zaleski S, and Zanetti G, “Lattice Boltzmann model of immiscible fluids”, Phys. Rev. A, vol. 43, pp. 4320–4327, 1991.
[15] Rothman DH and Keller JM, “Immiscible cellular-automaton fluids”, J Stat Phys, vol. 52, pp. 1119–1127, 1988.
[16] Shan X and Chen H, “Lattice Boltzmann model for simulating flows with multiple phases and components”, Phys. Rev. E, vol. 47, pp. 1815–1819, 1993.
[17] Swift MR, Osborn WR, and Yeomans JM, “Lattice Boltzmann Simulation of Nonideal Fluids”, Phys. Rev. Lett., vol. 75, pp. 830–833, 1995.
[18] Ginzburg I, “A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids”, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 360, pp. 453–466, 2002.
[19] Ginzburg I, and Steiner K, “Lattice Boltzmann model for free-surface flow and its application to filling process in casting”, Journal of Computational Physics, vol. 185, pp. 61–99, 2003.
[20] Hirt CW and Nichols BD, “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, vol. 39, pp. 201–225, 1981.
[21] Thürey N, “A Single-phase Free Surface Lattice Boltzmann Method, MA Thesis,” University of Erlangen-Nuremberg, Germany, 2003
[22] Körner C, Thies M, Hofmann T, Thürey N, and Rüde U, “Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming”, J Stat Phys, vol. 121, pp. 179–196, 2005.
[23] Thürey N and Rüde U, “Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids”, Comput. Visual Sci., vol. 12, pp. 247–263, 2009.
[24] Xing XQ, Butler DL, and Yang C, “Lattice Boltzmann-based single-phase method for free surface tracking of droplet motions”, Int. J. Numer. Meth. Fluids, vol. 53, pp. 333–351, 2007.
[25] Patankar SV, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1981
[26] Sukop MC and Thorne DT, Lattice Boltzmann Modeling - An Introduction for Geoscientists and Engineers, 2006.
[27] 鄭楚光 and 郭照立, 格子Boltzmann 方法的原理及應用, 北京科學出版社, 2008.
[28] Mohamad AA, Lattice Boltzmann Method – Fundamentals and Engineering Applications with Computer Codes, 2011.
[29] d’Humieres D and Lallemand P, “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, vol. 1, pp. 599, 1987.
[30] Krüger T, Unit conversion in LBM, in LBM Workshop, 2011.
[31] Courant R, Isaacson E, and Ress M, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Comm. Pure Appl. Math., vol. 5, pp. 243-255, 1952.
[32] Gentry AD, Martin RE, and Daly BJ, “An Eulerian differencing method for unsteady compressible flow problems”, J. Comp. Phys. vol. 1 pp 87-118, 1966.
[33] Runchal AK and Wolfstein M, “Numerical Integration Procedure for the Steady State Navier-Stokes Equation”, J. Mech. Eng. Sci., vol. 11, pp. 445, 1969.
[34] 江舶豪, “矩形網格之晶格波茲曼法”, 成功大學航空太空工程學系學位論文, pp. 1-121, 2018.
[35] 陳瑩萱, “應用晶格波茲曼法於為射出成型之研究”, 成功大學航空太空工程學系學位論文, pp. 1-105, 2017.
[36] 陳維霖, “應用晶格波茲曼法結合大渦法模擬紊流強制對流熱傳問題”, 成功大學航空太空工程學系學位論文, pp. 19-22, 2012