簡易檢索 / 詳目顯示

研究生: 林國聖
Lin, Guo-Sheng
論文名稱: 多輸入多輸出天線系統之隔離度改善
Improvement of Isolations of Multiple Input Multiple Output Antenna System
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 天線多功能長期演進電磁干擾碳黑薄膜多輸入多輸出相關包絡係數
外文關鍵詞: antenna, multi-function, LTE, EMI, carbon black film, MIMO, ECC
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線通訊網路系統的日益發展帶動著行動產品發展與創新。現今對於行動通訊產品的基本需求為輕、薄、短、小、低成本、多功能與多頻帶的操作之外,具備高速的無線傳輸速度也是不可或缺的條件,但是將上述條件與高規格的規範實現於產品時,將會提高整體設計的困難度。在無線通訊系統中,前端的天線是重要的傳輸/接收訊號端,對於現今通訊協定採用更加嚴格的標準,在設計天線的條件包含高性能、小尺寸、重量輕、低成本和多頻段,因此設計微型化多頻帶操作的天線是相當有挑戰性的課題;此外伴隨著電子產品的微小化,在有限的面積下配置多種功能的元件,此舉將提高內部訊號和外部訊號的相互電磁干擾(EMI),也興起我們探討元件設計與雜訊抑制的動力。高速無線傳輸速度的大演進,更加嚴格要求前端天線的規格,使得舊有的單輸入單輸出系統逐漸淘汰,取而代之的多輸入多輸出系統開始興起,同時衍伸出內部訊號之間的干擾問題,讓傳輸速度提升率受限,所以改善多天線通訊之間的干擾是相當重要的議題。
    本論文首先將提出一種天線的設計架構,並且透過簡易的印刷電路板技術達成實作,其特性具有長期演進系統(LTE)和無線廣域網路(WWAN)系統的單極天線,因此天線可應用於攜帶式的無線通訊設備上,其設計概念採用雙分支的單極饋入輻射體與接地面的耦合金屬體和匹配金屬條作為共振機制,並且可以激發640-875 MHz 和1255-2815 MHz的雙頻帶,藉由上述設計機制皆可符合第四代通訊協定和無線廣域網路的頻帶。上述天線可由模擬與量測的反射損耗、輻射場型、增益和效率等證明多頻帶的單極天線擁有良好特性。
    論文的第二部分探討產品內部的高頻電磁干擾問題,在文中我們提出具有吸收能量功用的導電薄膜,將導電薄膜放置於電路中可視為低通濾波器,同時提供良好的帶通響應。本文選用的導電薄膜材料為碳黑,其碳黑薄膜有幾項令人期待的性質,如高電阻率、可於低溫製程製作和低成本,更吸引人的是可藉由調整碳黑的比例控制吸收能量的起始頻率點,並由實驗量測可觀察出碳黑薄膜能有效的吸收高頻的能量。
    論文的第三部分探討多輸入多輸出系統的隔離度改善,藉由上述碳黑薄膜的吸收能量功能,我們提出一種新的方法,在多輸入多輸出系統中加入碳黑薄膜,透過碳黑薄膜吸收干擾訊號,並且由量測數據證明S參數、輻射場型、增益、輻射效率和相關包絡係數等特性符合商業的標準。

    Currently, wireless communication networks are developing rapidly, and the trends for mobile products include being creative and innovative. There is a need for mobile communication products to be compact in size, light weight, low-cost, multi-function, and characterized by multi-band operation. Additionally, it is also important to have a high wireless communication data rate. However, the above conditions and stricter specifications make designing products more difficult. In a wireless communication system, antennas are important transmitters/receivers. Emerging applications such as wireless communication protocols continue to challenge RF/microwave antennas with ever more stringent requirements, including being high performance, compact, light, low-cost, and multi-band. Thus, determining how to design a multi-band, miniaturized antenna is a big challenge. Furthermore, the inside of compact electronic products has many function devices that increase the electromagnetic interference (EMI) between interior and exterior signals, resulting in a need to research the power absorption in electronic devices and transmission lines.
    Due to the evolution of high speed wireless transmission, the standards of front antennas have become stricter, so single input single output (SISO) systems are gradually being replaced by multiple input multiple output (MIMO) systems, resulting in interference between the antennas and limiting the transmission speed at the same time. Thus, improvement in the degree of interference between two or more antennas is a popular topic now.
    First, an LTE antenna design structure is proposed and easily fabricated using a printed circuit board (PCB) process. The properties of the proposed monopole antenna are a Long Term Evolution (LTE) and wireless wide area network (WWAN) that can be applied in mobile equipment. The designed method is a combination of one monopole that is direct-fed within two branches and a couple-fed monopole with an impedance matching metal strip that connects to the ground and operation bands based on 6-dB return lossesof640-875 MHz and 1255-2815 MHz in the lower and higher bands, respectively. This method conforms with the fourth generation (4G) and WWAN operation bands. Simulations and measurements of monopole antenna return loss, radiation pattern, gain and efficiency, etc. are used to prove that the characteristics of this method are good.
    In the second section, we discuss the problems with the EMI of products. In this dissertation, a conductivity film is proposed to be a power absorber, which when added in the circuits, is like a low-pass filter. The conductivity film material is carbon black whose properties are expected to exhibit high resistance, and a low temperature, low cost process, especially due to the proportion of carbon black used to control the starting absorption frequency. The measured results indicate that the carbon black film absorbs the high frequency power effectively.
    In the third section, the improvement in the isolation of the MIMO system is discussed. We propose a novel method taking advantage of the absorbability of the carbon black film by adding a carbon black film in the MIMO system. Carbon black film absorbs interference noise and proves that the measured S-parameter, radiation pattern, peak gain, efficiency, and envelope correlation coefficients, etc. meet the commercial standards.

    摘要 I Abstract III Contents VII List of Tables IX List of Figures X CHAPTER 1 Introduction 1 1.1 Wireless Communication Protocols 1 1.2 Transmitter/Receiver Architectures 3 1.3 Electromagnetic Interference (EMI) 4 1.4 Multiple Input Multiple Output (MIMO) 5 1.5 Motivation 7 1.6 Overview of the Dissertation 9 CHAPTER 2 Overview of Passive Key Devices/Components 12 2.1 Microwave Planar Circuits 12 2.2 Passive Key Devices/Components 13 2.2.1 Introduction to Microwave Antennas 13 2.2.2 Current Antennas Issues 18 2.2.3 Antenna Product Trends 19 2.3 Previous and Current Works in Our Lab 20 CHAPTER 3 A Wideband Design of LTE/WWAN MIMO Antenna and Isolation by Decoupling Element 21 3.1 A Wideband Design of Strip Monopole Antenna and Coupled Component for LTE/WWAN Application 21 3.1.1 Introduction 21 3.1.2 Design of Antennas 23 3.1.3 Results and Discussion 24 3.2 Improvement the Isolation of MIMO Antenna System by Using Decoupling Circuit 29 3.2.1 MIMO Antenna System 30 3.2.2 Decoupling Element 31 3.2.3 Results and Discussion 32 3.3 Summary 36 CHAPTER 4 Effect of Carbon Black Film on High-Frequency Power Absorption 37 4.1 Introduction 37 4.2 Fabrication of Carbon Black Film Printed on Microstrip Line 41 4.3 Results and Discussion 43 4.4 Summary 49 CHAPTER 5 Isolation Improvement in UWB MIMO Antenna System Using Carbon Black Film 50 5.1 Introduction 50 5.2 Antenna Design and Carbon Black Film Measurement Results 52 5.2.1 Antenna 52 5.2.2 Carbon Black Film 53 5.3 Results and Discussion 54 5.4 Carbon Black Film Coating Position and Area 58 5.5 Summary 64 CHAPTER 6 Conclusions and Future Works 65 6.1 Conclusion 65 6.2 Future Works 67 References 68 Publication List 76 Vita 77

    [1] Gray, P. R. and Meyer, R. G., “Future directions in silicon ICs for RF personal communications”, Custom Integrated Circuits Conference (CICC), Proceedings of the IEEE, pp.83-90, May 1995.
    [2] Steelpillow, “The four types of coupling path involved in electromagnetic interference (EMI)”, Aug 10 2008. Retrieved Nov 08 2017, from WIKIMEDIA COMMONS Web: https://commons.wikimedia.org/wiki/File:EMI_coupling_modes.png
    [3] Sharawi, M. S., “Printed multi-band MIMO antenna systems and their performance metrics”,IEEE Antennas Propag. Mag, Vol.55, No.5, pp.219–232, Oct. 2013.
    [4] Benbaum, Illustration of differentiation between SISO, SIMO, MISO and MIMO wireless communication systems, Nov 01 2005, Retrieved November 08 2017, from WIKIMEDIA COMMONS Web: https://commons.wikimedia.org/wiki/File:Prinzip_ MIMO.png
    [5] Chen, F. C., and Chu, Q. X., “Novel multistub loaded resonator and its application to high-order dual-band filters”, IEEE Trans. Microw. Theory Techn., Vol.58, No.6, pp.1551-1556, 2010.
    [6] Barrett, R. M., “Microwave Printed Circuits--The Early Years”, IEEE Trans. Microw. Theory Techn., Vol.32, No.9, pp.983-990, 1984.
    [7] Barrett, R. M., and Barnes, M. H., “Microwave printed circuits”, Radio and TV News, Vol.46, No.16, 1951.
    [8] Pozar, D. M., “Microwave engineering”, John Wiley & Sons, 2009.
    [9] Virtual Institute of Applied Science, Radiation Pattern, Dec 02 2010, Retrieved November 08 2017, from Virtual Institute of Applied Science Web: http://www.vias.org/wirelessnetw/wndw_ 06_05_05. html
    [10] Balanis, C. A., “Antenna theory analysis and design 2nd Ed.”,1997
    [11] Suma, M. N., Raj, R. K., Joseph, M., Bybi, P. C., and Mohanan, P., “A compact dual band planar branched monopole antenna for DCS/2.4-GHz WLAN applications”, IEEE Microw. Compon. Lett, Vol.16, No.5, pp.275-277, 2006.
    [12] Wong, K. L., “Planar antennas for wireless communications”, Microw. J., Vol.46, No.10, pp.144-145, 2003
    [13] Pan, S. C. and Wong, K. L., “Dual-frequency triangular microstrip antenna with a shorting pin”, IEEE Trans. Antennas Propag., Vol.45, No.12, pp.1889-1891, 1997
    [14] Rowell, C. R. and Murch, R. D., “A compact PIFA suitable for dual-frequency 900/1800-MHz operation”, IEEE Trans. Antennas Propag., Vol.46, No.4, pp.596-598, 1998.
    [15] Dou, W. P. and Chia, Y. W. M., “Novel meandered planar inverted-F antenna for triple-frequency operation”, Microw. Opt. Technol. Lett., Vol.27, No.1, pp.58-60, 2000
    [16] Lee, K. F. and Chen, W., “Advanced in Microstrip and Printed Antennas”, Wiley-InterScience, New York, 1997.
    [17] Pozar, D. M., “Microstrip antenna aperture-coupled to a microstripline”, Electron. Lett., Vol.21, No.2, pp.49-50, 1985.
    [18] Constantine, A. B., “Antenna theory: analysis and design”, MICROSTRIP ANTENNAS, third edition, John wiley & sons., 2005.
    [19] Scherer, A., Doll, T., Yablonovitch, E., Everitt, H. O. and Higgins, J. A., “Guest Editorial: Electromagnetic crystal structures, design, synthesis, and applications”, J. Lightwave Technol., Vol.17, No.11, pp.1928-1930, 1999.
    [20] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett., Vol.58, No.20, pp.2059-2062, 1987.
    [21] Radisic, V., Qian, Y., Coccioli, R., and Itoh, T., “Novel 2-D photonic bandgap structure for microstrip lines”, IEEE Microw. Guided Wave Lett., Vol.8, No.2, pp.69-71, 1998.
    [22] Radisic, V., Qian, Y., and Itoh, T., “Broad-band power amplifier using dielectric photonic bandgap structure”, IEEE Microw. Guided Wave Lett., Vol.8, No.1, pp.13-14, 1998.
    [23] Qian, Y. and Itoh, T., “Planar periodic structures for microwave and millimeter wave circuit applications”, Microwave Symposium Digest, IEEE MTT-S International, Vol. 4, pp. 1533-1536,1999.
    [24] Hong, J. S. G. and Lancaster, M. J., “Microstrip filters for RF/microwave applications”, John Wiley and Sons, Vol.167, 2004.
    [25] Danesh, S., Rahim, S. K. A., Abedian, M. and Hamid, M. R., “A compact frequency-reconfigurable dielectric resonator antenna for LTE/WWAN and WLAN applications,” IEEE Antennas Wireless Propag. Lett., Vol.14, pp.486-489, 2015.
    [26] Ban, Y. L., Qiang, Y. F., Chen, Z., Kang, K., and Guo, J. H., “A dual-loop antenna design for hepta-band WWAN/LTE metal-rimmed smartphone applications”, IEEE Trans. Antennas Propag., Vol.63, No.1, pp.48-58, 2015.
    [27] Yan, Y., Ban, Y. L., and Wu, G., “Dual-loop antenna with band-stop matching circuit for WWAN/LTE full metal-rimmed smartphone application”, IET Microw. Antennas Propag., Vol.10, No.15, pp.1715-1720, 2016.
    [28] Wu, D., Cheung, S. W., and Yuk, T. I., “Compact 3D-loop antenna with bandwidth enhancement for WWAN/LTE mobile-phones applications”, IET Microw. Antennas Propag., Vol.11, No.2, pp.240-246, 2017.
    [29] Wong, K. L., and Tsai, C. Y., “Low-profile dual-wideband inverted-T open slot antenna for the LTE/WWAN tablet computer with a metallic frame”, IEEE Trans. Antennas Propag., Vol.63, No.7, pp.2879-2886, 2015.
    [30] Lee, S. and Sung, Y., “Reconfigurable PIFA with a parasitic strip line for a hepta-band WWAN/LTE mobile handset”, IET Microw. Antennas Propag., Vol.9, No.2, pp.108-117, 2014.
    [31] Deng, C., Li, Y., Zhang, Z. and Feng, Z., “Planar printed multi-resonant antenna for octa-band WWAN/LTE mobile handset”, IEEE Antennas Wireless Propag. Lett., Vol.14, pp.1734-1737, 2015.
    [32] Chen, S. C. and Tsou, Y. C., “Small-Size LTE/WWAN Two-Strip Monopole Exciter Antenna Integration With Metal Covers”, IEEE Trans. Antennas Propag., Vol.64, No.8, pp.3707-3711, 2016.
    [33] Wong, K. L. and Tsai, C. Y., “Small-size stacked inverted-F antenna with two hybrid shorting strips for the LTE/WWAN tablet device”, IEEE Trans. Antennas Propag., Vol.62, No.8, pp.3962-3969, 2014.
    [34] Zeng, Z., Yao, Y. and Zhuang, Y., “A wideband common-mode suppression filter with compact-defected ground structure pattern”, IEEE Trans. Electromagn. Compat., Vol.57, No.5, pp.1277-1280, 2015.
    [35] Liu, Q., Connor, S., Olivieri, C., Paulis, F. De, Orlandi, A., Cracraft, M. A. and Khilkevich, V. V., “Reduction of EMI due to common-mode currents using a surface-mount EBG-based filter”, IEEE Trans. Electromagn. Compat., Vol.58, No.5, pp.1440-1447, 2016
    [36] Pissoort, D., Catrysse, J., Claeys, T., Vanhee, F., Boesman, B. and Brull, C., “Towards a stripline setup to characterise the effects of corrosion and ageing on the shielding effectiveness of EMI gaskets”, 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp.7-12, 2015.
    [37] Kim, S. H. and Kim, S. S., “Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss”, J. Appl. Phys., Vol.108, No.2, 024904, 2010.
    [38] Maruta, K., Sugawara, M., Shimada, Y. and Yamaguchi, M., “Analysis of optimum sheet resistance for integrated electromagnetic noise suppressors”, IEEE Trans. Magn., Vol.42, No.10, pp.3377-3379, 2006.
    [39] Kim, S. S., “Numerical analysis on power absorption by thin films for conduction noise in microstrip line”, IEEE Trans. Magn., Vol.48, No.11, pp.3490-3493, 2012.
    [40] Ohnuma, S., Nagura, H., Fujimori, H. and Masumoto, T., “Noise suppression effect of nanogranular Co based magnetic thin films at gigahertz frequency”, IEEE Trans. Magn., Vol.40, No.4, pp.2712-2715, 2004.
    [41] Binarysequence, The PCB inside a 20GHz Agilent N9344C spectrum analyser showing various microstrip distributed element filter technology elements, 14 May 2013. Retrieved 08 Nov 2017, from WIKIMEDIA COMMONS Web: https://commons.wikimedia.org/wiki/File:Microstrip_Distributed_Element_Filter_Technology.jpg
    [42] Dexerials, Noise suppression thermal conductive sheet,(No Date), Retrieved 08 Nov 2017, from Dexerials Web: http://www.dexerials.jp/en/products/a5/e8000k.html
    [43] Tech-Etch, 5500 SERIES EMI SHIELDING WEAVESHIELD, (No Date), Retrieved 08 Nov 2017, from Tech-Etch Web: https://www.tech-etch.com/shield/ 5500series.html
    [44] Zhang, C. S., Ni, Q. Q., Fu, S. Y. and Kurashiki, K., “Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer”, Compos. Sci. Technol., Vol.67, No.14, pp.2973-2980, 2007.
    [45] Takeda, N., Iwata, N., Torimoto, T. and Yoneyama, H., “Influence of carbon black as an adsorbent used in TiO2 photocatalyst films on photodegradation behaviors of propyzamide”, J. Catal., Vol.177, No.2, pp.240-246, 1998.
    [46] Arduini, F., Majorani, C., Amine, A., Moscone, D. and Palleschi, G., “Hg 2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film”, Electrochim. Acta, Vol.56, No.11, pp.4209-4215, 2011.
    [47] Lonergan, M. C., Severin, E. J., Doleman, B. J., Beaber, S. A., Grubbs, R. H. and Lewis, N. S., “Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors”, Chem. Mat., Vol.8, No.9, pp.2298-2312, 1996.
    [48] Matthews, B. J., Li, Sunshine S., Lerner, L. and Judy, J. W., “Effects of electrode configuration on polymer carbon-black composite chemical vapor sensor performance”, IEEE Sens. J., Vol.2, No.3, pp.160-168, 2002.
    [49] Gupta, T. K., “Effect of temperature on electrical conduction of carbon-black-filled polyimide”, IEEE Trans. Compon. Hybrids, Manuf. Technol., Vol.12, No.4, pp.696-700, 1989.
    [50] Raj, P. M., Balaraman, D., Govind, V., Abothu, I. R., Wan, L., Gerhardt, R., Swaminathan, M. and Tummala, R., “Processing and dielectric properties of nanocomposite thin film supercapacitors for high-frequency embedded decoupling”, IEEE Trans. Compon. Packag. Technol., Vol.30, No.4, pp.569-578, 2007.
    [51] Kyatsandra, S. and Wilkins, R., “Total ionizing dose X-ray radiation effects on MWCNT/PMMA thin film composites”, IEEE Trans. Nanotechnol., Vol.14, No.1, pp.152-158, 2015.
    [52] Lin, G. S., Sung, C. H., Chen, J. L., Chen, L. S. and Houng, M. P., “Isolation improvement in UWB MIMO antenna system using carbon black film”, IEEE Antennas Wireless Propag. Lett., Vol.16, pp.222-225, 2017.
    [53] Sharawi, M. S., “Printed Multi-Band MIMO antenna systems and their performance metrics”, IEEE Antennas Propag. Mag, Vol.55, No.5, pp.219-232, 2013.
    [54] Hsu, C. C., Lin, K. H., Su, H. L., Lin, H. H. and Wu, C. Y., “Design of MIMO antennas with strong isolation for portable applications”, Antennas and Propagation Society International Symposium, 2009. APSURSI'09., pp.1-4, 2009.
    [55] Ketzaki, D. A. and Yioultsis, T. V., “Metamaterial-based design of planar compact MIMO monopoles”, IEEE Trans. Antennas Propag., Vol.61, No.5, pp.2758-2766, 2013.
    [56] Zhao, J., Wang, J., “Correlation reduction in antennas with metamaterial based on newly designed SRRs”, Electromagnetic Compatibility (APEMC), 2010 Asia-Pacific Symposium on, pp.981-984, 2010.
    [57] Ban, Y. L., Chen, Z. X., Chen, Z., Kang, K. and Li, J. L. W., “Decoupled closely spaced heptaband antenna array for WWAN/LTE smartphone applications”, IEEE Antennas Wireless Propag. Lett., Vol.13, pp.31-34, 2014.
    [58] Ban, Y. L., Chen, Z. X., Chen, Z., Kang, K. and Li J. L. W., “Decoupled Hepta-Band antenna array for WWAN/LTE smartphone applications”, IEEE Antennas Wireless Propag. Lett., Vol.13, pp.999-1002, 2014.
    [59] Sharawi, M. S., Jan, M. A. and Aloi, D. N., “Four-shaped 2 × 2 multi-standard compact multiple-input–multiple-output antenna system for long-term evolution mobile handsets”, IET Microw. Antennas Propag., Vol.6, pp.685–696, 2012.
    [60] Rowell, C. and Lam, E. Y., “Multiple frequency band and high isolation mobile device antennas using a capacitive slot”, IEEE Trans. Antennas Propag., Vol.60, No.8, pp.3576-3582, 2012.
    [61] Karimian, R., Oraizi, H., Fakhte, S. and Farahani, M., “Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems”, IEEE Antennas Wireless Propag. Lett., Vol.12, pp.405-408, 2013.
    [62] Shin, Y. S., Choi, J. H., Kim B. N. and Park, S. O., “A monopole antenna with a magneto–dielectric material and MIMO applications”, IEEE Antennas Wireless Propag. Lett., Vol.7, pp.764-768, 2008.
    [63] Cheon, Y., Lee, J. and Lee, J., “Quad-band monopole antenna including LTE 700 MHz with magneto-dielectric material”, IEEE Antennas Wireless Propag. Lett., Vol.11, pp.137-140, 2012.
    [64] Gonschorek, K. H. and Vick, R., “Electromagnetic compatibility for device design and system integration”, Springer Science & Business Media, pp.380-392, 2009.
    [65] Zhang, Y., Nakata, T. and Miyashita, T., “A miniature circular disc monopole UWB antenna with a tapered feed line and a circular ground”, Microwave Conference, 2008 China-Japan Joint., pp.411-414.
    [66] Mao, C. X. and Chu, Q. X., “Compact co-radiator UWB-MIMO antenna with dual polarization”, IEEE Trans. Antennas Propag., Vol.62, No.9, pp.4474-4480, 2014.
    [67] Ren, J., Hu, W., Yin, Y. and Fan, R., “Compact printed MIMO antenna for UWB applications”, IEEE Antennas Wireless Propag. Lett., Vol.13, pp.1517-1520, 2014.
    [68] Liu, Y. F., Wang, P. and Qin, H., “Compact ACS-fed UWB antenna for diversity applications”, Electron. Lett., Vol.50, No.19, pp.1336-1338, 2014.
    [69] Khan, M. S., Capobianco, A. D., Naqvi, A., Ijaz, B., Asif, S. and Braaten, B. D., “Planar, compact ultra-wideband polarisation diversity antenna array”, IET Microw. Antennas Propag., Vol.9, No.15, pp.1761–1768, 2015.
    [70] Khan, M. S., Capobianco, A. D., Asif, A., Iftikhar, S. and Braaten, B. D., “A compact dual polarized ultrawideband multiple‐input‐multiple‐output antenna”, Microw. Opt. Technol. Lett., Vol.58, No.1, pp.163-166, 2016.
    [71] Yun, Y. J., Hong, W. G., Choi, N. J., Kim, B. H., Jun, Y. and Lee, H. K., “Ultrasensitive and Highly Selective Graphene-Based Single Yarn for Use in Wearable Gas Sensor”, Sci Rep, Vol.5, 2015.

    下載圖示 校內:2022-11-01公開
    校外:2022-11-01公開
    QR CODE